Диссертация (1104792), страница 20
Текст из файла (страница 20)
Theor. (2010), 43, 065201, arXiv:0912.3507.[78] S. Ole Warnaar, A. Selberg, Integral for the Lie Algebra An // J. Phys. A: Math.Theor. (2008), 41, 025209, arXiv:0708.1139.[79] S. Ole Warnaar, The sl3 Selberg Integral // Adv. Math. (2010), 224, 499-524,arXiv:0901.4176.[80] V. G. Turaev, The Yang-Baxter equation and invariants of links // Invent. Math.(1988), 92, 527553.113[81] W. Fulton, Young Tableaux, with Applications to Representation Theory andGeometry // Cambridge, Cambridge University Press, 1997.[82] A. Mironov, A. Morozov, And. Morozov, Character expansion for HOMFLYpolynomials.
II. Fundamental representation. Up to five strands in braid // JHEP(2012), 03, 034, arXiv:1112.2654.[83] M. Rosso, V. F. R. Jones, On the invariants of torus knots derived from quantumgroups // J. Knot Theory Ramifications (1993), 2, 97-112.[84] J. M. F. Labastida, M. Marino, A New Point of View in the Theory of Knot and LinkInvariants // J. Knot Theory Ramifications (2002), 11, 173, arXiv:math/0104180.[85] X.-S. Lin, H. Zheng, On the Hecke algebras and the colored HOMFLY polynomial// Trans.
Amer. Math. Soc. (2010), 362, 1-18, arXiv:math/0601267.[86] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Unification ofAll String Models with c < 1 // Phys. Lett. B (1992), 275, 311-314, arXiv:hepth/9111037.[87] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Towards unifiedtheory of 2d gravity // Nucl. Phys.
B (1992), 380, 181-240, arXiv:hep-th/9201013.[88] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Generalized KontsevichModel Versus Toda Hierarchy and Discrete Matrix Models // Nucl. Phys. B (1993),397, 339-378, arXiv:hep-th/9203043.[89] А. Ю. Морозов, Теория струн — что это такое? // Успехи Физ. Наук (1992),162 (8), 84-175.[90] А. Ю. Морозов, Интегрируемость и матричные модели // Успехи Физ. Наук(1994), 164, 3-62, arXiv:hep-th/9303139.[91] A.
Morozov, Matrix Models as Integrable Systems // Particles and Fields, CRMSeries in Mathematical Physics (1999), 127-210, arXiv:hep-th/9502091.[92] A. Morozov, Challenges of Matrix Models // String theory: From gauge interactionsto cosmology, Proceedings, NATO Advanced Study Institute, Cargese, 129-162,arXiv:hep-th/0502010.[93] A. Mironov, 2d gravity and matrix models. I. 2d gravity // Int. J.
Mod. Phys. A(1994), 9, 4355, arXiv:hep-th/9312212.114[94] A. Mironov, Quantum Deformations of τ -functions, Bilinear Identities andRepresentation Theory // arXiv:hep-th/9409190.[95] A. Mironov, τ -function within group theory approach and its quantization //arXiv:q-alg/9711006.[96] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Generalized Kazakov-MigdalKontsevich Model: group theory aspects // Int. J.
Mod. Phys. A (1995), 10, 2015,hep-th/9312210.[97] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, Integrability of HurwitzPartition Functions. I. Summary // J. Phys. A: Math. Theor. (2012) 45, 045209,arXiv:1103.4100.[98] А. Д. Миронов, А. А. Морозов, С. М. Натанзон, Полный набор операторовразрезания и склейки в теории Гурвица–Концевича // Теоретическая и Математическая физика (2011), 166 3-27, arXiv:0904.4227.[99] A. Mironov, A. Morozov, S.
Natanzon, Algebra of differential operatorsassociated with Young diagrams // J. of Geom. and Phys. (2012), 62, 148-155,arXiv:1012.0433.[100] A.Okounkov, Toda equations for Hurwitz numbers // Math. Res. Lett. (2000), 7,447-453, arXiv:math/0004128.[101] A.Mironov, A.Morozov, Virasoro constraints for Kontsevich-Hurwitz partitionfunction // JHEP (2009), 02, 024, arXiv:0807.284.[102] M.Kazarian, KP hierarchy for Hodge integrals // arXiv:0809.3263.[103] H. Itoyama, A. Mironov, A. Morozov, An.
Morozov, Character expansion forHOMFLY polynomials. III. All 3-Strand braids in the first symmetric representation// Int. J. of Mod. Phys. A (2012), 27, 1250099, arXiv:1204.4785.[104] H. Itoyama, A. Mironov, A. Morozov, An. Morozov, Eigenvalue hypothesis forRacah matrices and HOMFLY polynomials for 3-strand knots in any symmetricand antisymmetric representations // Int. J. of Mod.
Phys. A (2013), 28, 1340009,arXiv:1209.6304.[105] P. Ramadevi, T. Sarkar, On Link Invariants and Topological String Amplitudes //Nucl. Phys. B (2001), 600, 487-511, arXiv:hep-th/0009188.115[106] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, A. Smirnov,Superpolynomials for toric knots from evolution induced by cut-and-join operators// JHEP (2013), 03, 021, arXiv:1106.4305.[107] А. Д. Миронов, А. А.
Морозов, А. В. Слепцов, Разложение по родам для полиномов ХОМФЛИ // Теоретическая и Математическая физика (2013), 177,179-221, arXiv:1303.1015.[108] A. Mironov, A. Morozov, A. Sleptsov, On genus expansion of knot polynomials andhidden structure of Hurwitz tau-functions // Euro. Phys. J. C (2013), 73, 2492,arXiv:1304.7499.[109] X.-S. Lin, H. Zheng, On the Hecke algebras and the colored HOMFLY polynomial// arXiv:math.QA/0601267.[110] S.
Zhu, Colored HOMFLY polynomial via skein theory // arXiv:1206.5886.[111] А. С. Анохина, А. А. Морозов, Процедура каблирования для раскрашенныхполиномов ХОМФЛИ // Теоретическая и Математическая физика (2014), 178,3-68, arXiv:1307.2216.[112] Ant. Morozov, Special colored Superpolynomials and their representationdependence // JHEP (2012), 12, 116, arXiv:1208.3544.[113] Ant. Morozov, The first-order deviation of superpolynomial in an arbitraryrepresentation from the special polynomial // Письма в ЖЭТФ (2013), 97, 171172, arXiv:1211.4596.[114] K.
Kawagoe, Limits of the HOMFLY polynomials of the figure-eight knot// Intelligence of Low Dimensional Topology 2006, 143-150, Singapore, WorldScientific Publishing Co., 2007.[115] J. Labastida, M. Marino, Polynomial invariants for torus knots and topologicalstrings // Comm. Math. Phys.
(2001), 217, 423-449, arXiv:hep-th/0004196.[116] J. M. F. Labastida, M. Marino, C. Vafa, Knots, links and branes at large N //JHEP (2000), 11, 007, hep-th/0010102.[117] M. Marino, C. Vafa, Framed knots at large N // arXiv:hep-th/0108064.[118] M. Aganagic, Sh. Shakirov // arXiv:1105.5117.116[119] H. Fuji, S. Gukov, P. Sulkowski (with an appendix by Hidetoshi Awata), VolumeConjecture: Refined and Categorified // Adv.
Theor. Math. Phys. (2012), 16, 16691777, arXiv:1203.2182.[120] S. Gukov, M. Stosic, Homological algebra of knots and BPS states //arXiv:1112.0030.[121] N. M. Dunfield, S. Gukov, J. Rasmussen, The Superpolynomial for Knot Homologies// Exp. Math. (2006), 15, 129-159, arXiv:math/0505662.[122] R. Gelca, On the relation between the A-polynomial and the Jones polynomial //Math.
Proc. Cambridge Philos. Soc. (2002), 133, 311-323, arXiv:math/0004158.[123] R. Gelca, J. Sain, The noncommutative A-ideal of a (2,2p+1)-torus knot determinesits Jones polynomial // J. Knot Theory Ramifications (2003), 12, 187-201,arXiv:math/0201100.[124] S. Gukov, Three-Dimensional Quantum Gravity, Chern-Simons Theory, and the APolynomial // Commun. Math. Phys.
(2005), 255, 577-627, arXiv:hep-th/0306165.[125] S. Garoufalidis, T. Le, The colored Jones function is q-holonomic // Geometry andTopology (2005), 9, 1253-1293, arXiv:math/0309214.[126] A. Alexandrov, A. Mironov, A. Morozov, BGWM as Second Constituent of ComplexMatrix Model // JHEP (2009), 12, 053, arXiv:0906.3305.[127] A. Alexandrov, A.
Mironov, A. Morozov, P. Putrov, Partition Functions of MatrixModels as the First Special Functions of String Theory. II. Kontsevich Model //Int. J. Mod. Phys. A (2009), 24, 4939-4998, arXiv:0811.2825.[128] B. Eynard, All genus correlation functions for the hermitian 1-matrix model //JHEP (2004), 0411, 031, arXiv:hep-th/0407261.[129] L. Chekhov, B. Eynard, Hermitean matrix model free energy: Feynman graphtechnique for all genera // JHEP (2006), 0603, 014, arXiv:hep-th/0504116.[130] L.
Chekhov, B. Eynard, Matrix eigenvalue model: Feynman graph technique for allgenera // JHEP (2006), 0612, 026, arXiv:math-ph/0604014.[131] N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition// arXiv:0808.0635.117[132] R. Dijkgraaf, H. Fuji, M. Manabe, The Volume Conjecture, Perturbative KnotInvariants, and Recursion Relations for Topological Strings // Nucl. Phys.
B (2011),849, 166-211, arXiv:1010.4542.118.















