Диссертация (1104273), страница 21
Текст из файла (страница 21)
5962. Pp. 185-187.109. Zhu J., Yu Z. F., Burkhard G. F., Hsu C. M., Connor S. T., Xu Y. Q., Wang Q., McGehee M.,Fan S. H., Cui Y. Optical absorption enhancement in amorphous silicon nanowire and nanoconearrays // Nano Lett. 2009. Vol. 9, no. 1. Pp. 279-282.110. Li J. S., Yu H. Y., Wong S. M., Zhang G., Lo G. Q., Kwong D. L. Design guidelines of periodicSi nanowire arrays for solar cell application // Appl. Phys. Lett. 2009. Vol. 95.
P. 243113.111. Nayak B. K., Iyengar V. V., Gupta M. C. Efficient light trapping in silicon solar cells by ultrafastlaser-induced self-assembled micro/nano structures // Progress on Photovoltaics. 2011. Vol. 19,no. 6. Pp. 631-639.112. Muskens O. L., Rivas J. G., Algra R. E., Bakkers E. P. A. M., Lagendijk A. Design of lightscattering in nanowire materials for photovoltaic applications // Nano Letters. 2008.
Vol. 8, no. 9.Pp. 2638-2642.113. Raman C. V., Krishnan K. S. A new type of secondary radiation // Nature. 1928. Vol. 121.Pp. 501-502.114. Ландсберг Г. С., Мандельштам Л. И. Новое явление при рассеянии света (предварительноесообщение) // Журнал Русского физ.-хим. об-ва. 1928. Т. 60. С. 335.115. Mamichev D. A., Konstantinova E. A., Astrova E. V., Zharova Y. A., Timoshenko V. Y.Enhanced photoluminescence in grooved silicon microstructures // Appl Phys B. 2011. Vol 104,no. 1. Pp.
99-104.116. Richter H., Wang Z. P., Ley L. The one phonon Raman-spectrum in microcrystalline silicon //Solid State Commun. 1981. Vol. 39, no. 5. Pp. 625-629.116117. Campbell H., Fauchet P. M. The effects of microcrystal size and shape on the one phononRaman-spectra of crystalline semiconductors // Solid State Commun. 1986. Vol.
58, no. 10.Pp. 739-741.118. Duval E., Boukenter A., Champagnon B. Vibration eigenmodes and size of microcrystallites inglass: observation by very-low-frequency Raman scattering // Phys. Rev. Lett. 1986. Vol. 56,no. 19. Pp. 2052-2055.119. Irmer G. Raman scattering of nanoporous semiconductors // J. Raman Spectrosc.
2007. Vol. 38,no. 6. Pp. 634-646.120. Adu K. W., Gutie´rrez H. R., Kim U. J., Sumanasekera G. U., Eklund P. C. Confined phonons inSi nanowires // Nano Lett. 2005. Vol. 5, no. 3. Pp. 409-414.121. Gupta R., Xiong Q., Adu C. K., Kim U. J., Eklund P. C. Laser-induced fano resonance scatteringin silicon nanowires // Nano Lett. 2003. Vol. 3, no. 5.
Pp. 627-631.122. Шен И. Р. // Принципы нелинейной оптики (М., Наука, 1989).123. Boyraz O., Jalali B. Demonstration of a silicon Raman laser // Opt. Express. 2004. Vol. 12,no. 21. Pp. 5269-5273.124. Dimitropoulos D., Fathpour S., Jalali B. Limitations of active carrier removal in silicon Ramanamplifiers and lasers // Appl. Phys. Lett. 2005. Vol. 87, no. 26. Pp. 261108.125. Hokr B. H., Yakovlev V. V. Raman signal enhancement via elastic light scattering. //Optics express. 2013.
Vol. 21, no 10. Pp. 11757-11762.126. Tolles W.M., Nibler J.W., McDonald J.R., Harvey A.B. A review of the theory and application ofcoherent anti-Stokes Raman spectroscopy (CARS) // Applied Spectroscopy. 1977. Vol. 31, no. 4.Pp. 253-339.127. Zheltikov A.M. Coherent anti-Stokes Raman scattering: from proof-of-the-principle experimentsto femtosecond CARS and higher order wave-mixing generalizations // J.
Raman Spectrosc. 2000.Vol. 31, no. 8-9. Pp. 653–667.128. Zheltikov A.M. Nano-optical dimension of coherent anti-Stokes Raman scattering //Laser Phys. Lett. 2004. Vol. 1, no. 9. Pp. 468-472.129. Arakcheev V.G., Valeev A.A., Morozov V.B., Olenin A.N. CARS diagnostics of molecularmedia under nanoporous confinement // Laser Phys. 2008. Vol. 18, no. 12. Pp. 1451-1458.130. Mitrokhin V.P., Fedotov A.B., Ivanov A.A., Alfimov M.V., Zheltikov A.M. Coherent anti-StokesRaman scattering microspectroscopy of silicon components with a photonic-crystal fiberfrequency shifter // Opt. Lett.
2007. Vol. 32, no. 23. Pp. 3471-3473.131. Namboodiri V., Scaria A., Namboodiri M., Materny A. Investigation of molecular dynamics inβ-carotene using femtosecond pump-FWM spectroscopy // Laser Phys. 2009. Vol. 19, no. 2.Pp. 154-161.117132. Bergner G., Vater E., Akimov D., Schlücker S., Bartelt H., Dietzek B., Popp J. Tunable narrowband filter for CARS microscopy // Laser Phys.
Lett. 2010. Vol. 7, no. 7.Pp. 510-516.133. Bergner G., Akimov D., Schlücker S., Bartelt H., Dietzek B., Popp J. Tunable optical setup withhigh flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy //Laser Phys. Lett. 2011. Vol. 8, no. 7. Pp. 541-546.134. König K., Breunig H.G., Bückle R., Kellner-Höfer M., Weinigel M., Büttner E., Sterry W.,Lademann J. Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHGtomography // Laser Phys.
Lett. 2011. Vol. 8, no. 6. Pp. 465-468.135. Koonath P., Solli D.R., Jalali B. Broadband coherent anti-Stokes Raman scattering in silicon //Opt. Lett. 2010. Vol. 35, no. 3. Pp. 351-353.136. Аронзон Б. А., Дричко И. Л. // Переход металл-диэлектрик в магнитном поле в сильнолегированном антимониде индия.
ФТП. 1992. Т. 26, № 8. С. 1446-1461.137. John S. Electromagnetic absorption in a disordered medium near a photon mobility edge //Phys. Rev. Lett. 1984. Vol. 53, no. 22. Pp. 2169-2172.138. Anderson P. W. The question of classical localization. A theory of white paint? // Philos. Mag.1985. Vol. 52, no. 3. Pp.
505-511.139. Watson G. H., Fleury P. A., McCall S. L. Search for photon localization in the time domain //Phys. Rev. Lett. 1987. Vol. 58, no. 9. Pp. 945-948.140. Tiginyanu I. M., Kravetsky I. V., Marowsky G., Hartnagel H.L. Efficient optical second harmonicgeneration in porous membranes of GaP // Phys. Stat. Sol. A. 1999. Vol. 175, no. 2, Pp. R5-R6.141.
Kurtz S. K., Perry T. T. A Powder technique for the evaluation of nonlinear optical materials //J. Appl. Phys. 1968. Vol. 39, no. 8. Pp. 3798-3813.142. Golovan L. A., Kuznetsova L. P., Fedotov A. B., Konorov S. O., Sidorov-Biryukov D. A.,Timoshenko V. Y., Zheltikov A.
M., Kashkarov P. K. Nanocrystal-size-sensitive third-harmonicgeneration in nanostructured silicon // Appl. Phys. B. 2003. Vol. 76, no. 4. Pp. 429-433.143. Golovan L. A., Timoshenko V. Yu. Nonlinear-optical properties of porous silicon nanostructures// J. Nanoelectron.
Optoelectron. 2013. Vol. 8, no. 3. Pp. 223-239.144. Schuurmans F. J. P., Vanmaekelbergh D., Van de Lagemaat J., Lagendijk A. Strongly photonicmacroporous gallium phosphide networks // Science. 1999. Vol. 284. Pp. 141-143.145. Schuurmans F. J. P., Megens M., Vanmaekelbergh D., Lagendijk A. Light scattering near thelocalization transition in macroporous GaP networks // Phys.
Rev. Lett. 1999. Vol. 83, no. 11.Pp. 2183-2186.146. Lagendijk A., Gómez Rivas J., Imhof A., Schuurmans F. J. P., Sprik R. Propagation of light indisordered semiconductors // Proceedings of the NATO ASI "Photonic Crystals and LightLocalization in the 21st century". ed. Soukoulis C. M. Kluwer. Dordrecht. 2001.
Pp. 447-473.118147. Gomes Rivas J., Lagendijk A., Tjerkstra R. W., Vanmaekelbergh D., Kelly J. J. Tunable photonicstrength in porous GaP // Appl. Phys. Lett. 2002. Vol. 80, no. 24. Pp. 4498-4500.148. Tiginyanu I. M., Kravetsky I. V., Monecke J., Cordts W., Marowsky G., Hartnagel H. L.Semiconductor sieves as nonlinear optical materials // Appl. Phys. Lett. 2000.
Vol. 77, no. 15.Pp. 2415-2417.149. Melnikov V. A., Golovan L. A., Konorov S. O., Fedotov A. B., Petrov G. I., Li L., Yakovlev V.V., Gavrilov S. A., Zheltikov A. M., Timoshenko V. Yu., Kashkarov P. K. // Porous galliumphosphide: challenging material for nonlinearoptical applications. Phys. Stat. Sol. C. 2005. Vol. 2,no. 9. Pp. 3248–3252.150. Пул Ч., Оуэнс Ф. // Нанотехнологии (М., Техносфера, 2005).151. Кашкаров П. К., Тимошенко В. Ю. Люминесценция пористого кремния // Природа, Т. 12,С.














