Диссертация (1097858), страница 11
Текст из файла (страница 11)
-@& %% (% 7-? 95% 7)E -5'56? % %, 8% &% 9((% %-& .%% 8@ (5%6 q q 5E %%%E T − T 2p /M H% )&' -, 9? &' F>4"G F>4>G %'%' -@5:E )5''6 -5 T → T 7A &5: < -5' 5&' ?95%? % 8 @5&%6 -5 .B I%' ;5 )&, 56 %@? 95% p 9%, -5 -5'%' 5&, αZ m 1% -%5-DAD < -5' -) )&, -: 9?,E %9((%: %-& ?D% 8D 56C2qa+2IaI2/3eT − TI 2Z 4/3Eh (me /Ma ),?- E = α m = 27.2 9 P 9?' I% 5' ?' FZ = 32G %D-5& T −T 0.04 9 ' ;5 9?, %56 -5' %A 9@% ?%: % %: %,% ]0!E0#^ ) -E 9% 9% -%?% ? &%%56@% ?: -%% 5& T E %5'DA 569 )&' 8 8 ? )< K 95% ?T ≈ 11 9 1% 95%: '5'D%' 75 56 '): %?'E -56 PB A% )8% % )@& -? 56 p 5' 5-? 8 56)%6 %5 p = √2m T %%DA' ;5 9?, T − T 0.3 9 ):@%' '- 756;E & -5 PB %8 'E .8 %56 5& 78-: 9%h2eIIe II#4%& %'A, 7% 7:5 %%& %: )5&: <:%5%56, )< 9 )-,% 95%E (%@ ,% A% H- : )56%%: -%<C• H% 7A' %' 7? '- (@5) Pv? -5' )? (e, 2e) <, %@ H-58 <- ?5')< 55? 7@? '-E )5'DA' :-5%6 %%6 5D ?5'%6 :- 9?%&D %6• H) -)&%6 -5' 56? 758' 5@ 5 FercG % %- 1 35 -%: %%&%% 9% %; '5'%' 7 758 5@ 5 FecGH- %%&, 5) 5- 9((% %? '- 5@& )?? (e, 2e) < % -- A6D %%@: )E &% &% 8%&? % &@% 9((% %? '- %%& 756; 9?'%5' F∼ 1 9G -;% &% 758'• (5 % 7 758 5 5 -5' @)? (e, 2e) <, ?95%: %E % 7-% %&: -%,E '): 5, ?5'%6D 9%? 758' :5: &5: &%: -((<@56: &, )?, )< % ?5' 95%: -@ )78- .%% H5& -5%%56 ?5 5- -: %- (e, 2e) (e, 3 − 1e) 1•#"• )% 7A, (5) % %- 1 %% 5)? @5' 56)' 5 ;' -5' %', &56? &:95%E 5& 758 -5' S .%<: )@?? (e, 2e) < 5) 5• :5: &5: &%: 95D): -((<56: &@, 1 < % -- 5) 5 -5' )&%%@? )? 8 H) :, %<5 %- 1-5' 5-' 5: (<, )78-: %', ; 5& %%' 57%? 5)? 5' )8• H- %%&, 5) 5): 9((% %'' 7:%@: -DA?E '? A? 95% %- 1 )&%% 8 78E &% -5: %<@' 5), 5')< 5' -8 &6 %? 5' 95%: 9?' 1 − 2 9 8% 7:%6 6 )&%56: %@5E &% 75% )&, 56 %-& q 1/x E ?- xP 5%- 5& <55'<, 7-? 95% 5)5E 9((% 5)? 5' %'' 7:%: 95% 87&6• )7% 7A' -&' -56 (e, 2e) < @% %-? %5E %' &%:% 5' -95%&? %5% %<5 )-,%' %5DA' 95%H-: &5: &%: % %&: 95% 5&'cR Q H5): 9((%: 7b, %, 5)@: - 7%, -95%&, (< 9% %55 7b':)56%%: - (e, 2e) 9% cR00#>• )% 7A, -- -5' %%&? ' (e, 2e) < '-&: 7: 5 )A' :5: &5:&%: 5: -5, 9?' &, 95@%, -5' 7: 5 cR S lkE NgE ex -5' -.@5: 5 %5: 5): %: 9((%:)<? 7'- &%: -5'H-58 %%&, ) (5: %&5' -5' < ' , : ) - )56%% ?5A' (% :5: &5: &%: @5: 9?%& ?5: -5, (%95%,: (γ, 2e) < % 3v - { Ok %@5: %: 7% 9% -5,E '): (%@9, , : H)E %' -'A,A5 8% 7:%6 5- A6D 5: ?5: @-5, (γ, 2e) %-• H- %%&, 5) 9((% ?? -) <9 95%, : ) - )56%% -(%@? ?5A' H)E 9%% 9((% 8% 7:%6 56) -5'5-' ) ' ; , %• (5 7A' %' (γ, 2e) < - @-'A 56< %% ?%? 5' (?< @P3 H5& 7A :8E '):DA %%6 (@%9 5&, -'A, A5 %&@? 95% %<5 %'8' -5 3v• H-58 7A, -- -5' &% -((<56: &, @< )< % : ,% (5) 5')<@, (< -&? %%? (% :5@•3#/: &5: 5%& &%: -((<56: @-, 9? &, )< ---7? % ,%:- H)E &% %5 )56%% &% % 758'7-: 95% :;% 56 <%• -5 ): 95% )5&? 75@8'E %8 -5 PB - 7A 7%&% 758D -5' %%< 5) -: @%: 9% ?%? % ,%• :5: &5: &%: -((<56: -, 9@? &, )< % ?5' 95%: %,% H)@E &% 56) ?5' &% %? A% -%% 9% ?%? % ,% -% @:;D &%%56% 9% 9% %5E &% 75))<? ? 9((%: 95%: 5'<, -'% )@% 6;D 5&: &, D 7587-: 95%% :8% 75?-%6 55? % HE %-E 8 3-E 1%E ; ) 5): 7@8-' 56%<E %8 <: )&'E %: 7%5-?% %'A, 7%: '- )56%%E ;-; -%<DE 7:55& &%&, --8 ,? (- (-%56: 5@-,E %% 7)' BE 7A% -,%' H5 F'G , 587: -& 7#0 '"" "8 - ) 7 :-5' 9((<% Δ (@5 F!!!G -56? - 9?%&D %6 F!!#GH-% ?, % F!0G -−iηG−0 (E) dks dke|ks keΦfZ−1ks ke ΦfZ−1|=(2π)3 (2π)3 E − ks2/2 − ke2/2 − EfZ−1− i0fG0− (E)=+ F0− (E),F!G?- G (E) -%5'% 7, ?5'):, ?, %E %' %−0 dks dke|ps pe ΦfZ−1ks ke ΦfZ−1|−F0 (E) =(2π)3 (2π)3 E − ks2/2 − ke2/2 − EfZ−1− i0F#Gf%&% ) -% 56)' F!G F#GE : 5& 7,'- 9?%&, % F!!!G (%) -F4GT̃ (Δ) = PR (Δ)T̃R (Δ),?-T̃R (Δ) =∞(n)T̃R (Δ)≡TPWBAn=0PR (Δ) =∞n=0+∞(n)T̃R (Δ),n=1(n)PR (Δ)≡1+∞(n)PR (Δ),n=1T̃R (Δ) = p0 ΦZi |Vi [G0−(E)Vf ]n|ps pe ΦfZ−1, dks dke(n)nZ−1PR (Δ) =ks ke ΦfZ−1|[G−.0 (E)Vf ] |ps pe Φf33(2π) (2π)(n)&%:'E &%f1+∞n=1n−[G−0 (E)Vf ] = 1 + G (E)Vf ,#2 56)' F!2GE 5& dks dkelim PR (Δ) =ks keΦfZ−1|Ψ̃−f (ps , pe ).3 (2π)3Δ→0(2π)F"GfH-5 F"G A%%E % %' '' |Ψ̃ (p , p )E 7-&; ' Pv?E '5'%' ()& 56@)' )56%%: 7%: v75 - ]!#2E!#=^E -E &%−fs1PR (Δ → 0) = Δ−iη exp( πη + iA)Γ(1 + iη)2 dks dkeks ke ΦfZ−1|Ψ−×f (ps , pe ).33(2π)(2π)eF>GfH-%5'' F4G F!!#G 56)' F>GE 5& ()&D 5%- -T̃ ≡ TT̃ .T = RT̃ ,T̃ =+F/G∞R∞(n)RR(n)RPWBAn=0n=1`-6 T̃ = lim T̃ (Δ) $ ?5'):, 7, '- 9?%@&, % ?5')<' (<' R -%' :8(n)RΔ→0(n)RR=δ(rs )δ(re)ΦfZ−1|Ψ−f (ps , pe ),fF0G?- δ(r) $ -56%.(<' B<' F0G 75-% 5-DA &-@: ,%C R = 1E 5 η̃ = 0E ?- η̃ = (η , η , η )`%E &% :;-:, 7 ?5')< '5'%' 5;6 -@ ) 7&? &5 )8: 7A 5&E )5&: 7:?5')< 7-% -%6 ): ?5')<: (< 1% )&@%E &% % ' )- RT̃ = T F/G -%5'% 7, %?-5D 5&E ? 9((<%: R T̃ -5: -)&E% %6 RT̃ = RT̃ E ?- R FR = 1E 5 η̃ = 0G T̃ %&D% -?,E 56%@%, <- ?5')< E A%% 7 ?5')<E%:, -% R = 1 -5' 5D7? )&' η̃ ,%%56E )58 R 'seseRRRRR#=,5 % % η̃ &%E &% T̃RT̃R =∞∞(η̃ · ∇η̃=0 )nR n=0∞ n?- %n!(n)R∼ ηn ?-E : (m)T̃Rm=0n−m∞(η̃ · ∇η̃=0 )R (m) (n)T̃R=1 = T̃R=1,T̃R ==(n−m)!n=0 m=0n=0η̃ · ∇η̃=0 = ηs∂∂ηs+ ηeη̃=0∂∂ηe+ ηseη̃=0∂∂ηseη̃=0-,%% %56 ?5')<D (<D RE 9% (η̃ · ∇R|= 1 8 -%6E &% T̃∼ η̃ T̃= T̃ ≡ Tη̃=0(n)R=1n(0)R=1(0)RF2GPWBAη̃=0 )0R=#! "" ()*5' :&5' &' mnO F4/G %7%' ) %', 77@-DA? %6 F&56?GE ')? %55 :5%DA % F&:G 95% % %55&, 7)<E )@5'DA, 5%% z < 0 H7?' 9((% %55&,%%:E -5 K85L 9((%:, -95%:, %<5 V '@5'%' %&%, (<,V = −V Θ(−z).F3!G5' &%? %55&? 7)< V = + Φ,F3#G?- Φ P 7% :- 5' (<' 9?' ')? %5595% %632χ (r) = e+ A(k )e]Θ(−z) ,F34GB(k )e Θ(z) + [e1 = (K + k ) − V ,F3"G2?-k − iγ2k,B(k ) =,γ = 2V − k ,A(k ) =F3>Gk + iγk + iγ √2V ≥ k ≥ 0 -- OdN dec.r %:, %<56:, 76 @< -5' 95% %55 1% 8 &%6E :&5'' 5D (@<D F34G 5& V = ∞E &% -%χ (r) = 2esin(k z)Θ(−z).F3/G%'' -DA? %6 :5%DA? % 95@% : 56 k = (K, k ) 9?, E = (K + k )/2 00iKRkz2k2zF−γzikz z−ikz z0zzzzz0z0z2zz0kiKRzzk22z#!!%<5 F3!G %6(+)χk (r)= eiKR54ikz z−ikz zikz z αz+ R(kz )e]Θ(z) + D(kz )e e Θ(−z)[e45(−)iKRikz zikz z−ikz z αze Θ(z) + [A1(kz )eχk (r) = e+ A2 (kz )e]e Θ(−z)(kz < 0),F30G(kz > 0),F32G?-kz − kz + iα2kz,D(k,R(kz ) =)=zkz + kz − iαkz + kz − iαkz + kz + iαkz − kz − iαA1(kz ) =,A2 (kz ) =,2kz2kzkz2 + 2V0 + [(kz2 + 2V0)2 + 4V0i2 ]1/2V0i,α= .(kz )2|kz |ZgW`-6 ' &%6 V %<5kz =F3=G0iV = (−V0 + iV0i )Θ(−z)- -5' &% )%' 95%: 5 %55E 755? .? < 5& 8 <%6 A6D -5: 7-?7? 95% λ - ?? %5' V0i =k,2λk =2(Ek + V0 ).`& λ 8 5&%6E E A6D %), (@5: & ]#2!E#2#^E %' 5& %: %5 % 538aλ=+ 0.41 a (E + Φ),F3! G(E + Φ)?- 95%' 9?' E + Φ )'%' 95%56% -'' %5@A 5' a )'%' %10 Ma =,F3!!GρN?- M P %:, E ρ P 7b' 5%%6 F ?a GE N P &5 ?@-32kkk324A3A#!# ) + 758 {nc 5&,:, Ns.%<5 F440GE % @%' -DA, 95%E -%' (5, F442G 5' % 5E78-DA' )-5 4>E Ns.%<5: V ; D%'5 %<5 ;%& )5 j E 9 95%@CZ exp(−λ |r − R |)(C = A, B).V (r) =F!G|r − R |`-6 Z P )'- E λ P %% 9' `&' 9% @% 8 5&%6 )56%% -? (5: F!G -95%@ Ns.%<5E %:, 5&%' ) ?5: :&5, 758 556, 5%% 95%.95% %<5 W 78 9((% -&? 9'E :' ? -5 PBCjsCjCsCCjjCexp(−λT F |r − r |),W (r, r ) =|r − r |F#G?- λ P %% 9' .BE %' %-%: 7@) ') - ?P`,%< 5' ' 95%, %%@: 5 5D' sp.%55 8 56)%6' -56D K85LF H58 3GE %,E ?5 {ncE 5-% 58%6TFV0 = xV0A + (1 − x)V0B .#!4!+ $ ,:&5 (<D F""GE -5?' - 7%: %'@' ?56% 3vE %:, -?5 -%5 &5 )5@' 7?5 ?-E &%:' % 7) F">G ''% ]# "^E 8 )%6+++++c+k (t)ck (t)ck2 ck1 = ck (t)ck1 ck (t)ck2 − ck (t)ck2 ck (t)ck1 121212++c+k1 (t)ck2 (t)ck2 ck1 .F!GH-% , &% F!G F""G -%F#GA12 (k1k2k1 k2 ; E12) = AUP (E12) + ACP (E12),(−)∞(−)AUP (E12)=−∞∞ACP (E12) =−∞(−),dt −iE12 t + ++++ck (t)ck1 ck (t)ck2 − ck (t)ck2 ck (t)ck1 ,e12122πF4GF"Gdt −iE12 t +eck (t)c+k2 (t)ck2 ck1 .12πB)&, :5 %: A%6 F4G 5-DA -C(−)UP (E12 )∞(−)AUP (E12)=%%' '%:E 5 -%@+dE A(−) (k1k1 ; E12 − E)A(−)(k2k2 ; E)−∞−A(−)(k1k2 ; E12− E)A(−)(k2k1 ; E),,F>G?-A(−) (kk ; E) =∞−∞dt −iEt +eck (t)ck ,2πF/G#!"P -&%&' %56' (<' 7)E 5-% ) F>GE% A (E ) -&%&, %56, (< F#G -%5'@% 7, &% E 5D<D -&%&: %56: (<,5' :&5' 5- % 5& c (t)c E -'AD @%?5 , &% F/G 56)' %;' F">GE -(−)UP12+kk+++c+k (t)ck = uk uk αk (t)αk + uk vk αk (t)α−k + vk uk α−k (t)αk ++vk vk α−k (t)α−k+= uk uk eiEk t αk+ αk + vk vk e−iE−k t α−k α−k= δkk u2k eiEk t nk + vk2 e−iE−k t (1 − n−k ) ,?-F0GF2G%6 - &5 7?5 %' H-%5'' F0G F/G %?@' E 5& -&%&D %56D (<D 3vn u δ(E − E ) + (1 − n )v δ(E + E ) .A (kk ; E) = δF=G56)' 9%% )56%%E %5'% 7? %- :5%6 %?@ 9? F>G 5&%6 :8 F"0G% A (E ) -&%&, %56, (<E -5'@' (5, F"GE 5DE 5 5-:%' 5 ' &@5 &%< F95%G - 7%: %'' ?56% 3v-%5'D% 7, )<D %', ): &5 95% ,@%' 5?& %E :- F0GE -5' %-& -E(?DA %?5 , &% F"GE -c (t)c (t) = δu v (1 − n − n ),F! Gc c = δu v (1 − n − n ).F!!GH-% F! G F!!G F"G &% %;' u v = Δ /2E @-% :8D F"2Gnk =(−)kk CP+k12k k1exp (Ek /kBT ) + 1kk2k−k−k12+k2k1 ,−k2 k1 k1k1−k1k2 k1k1 ,−k2 k1 k1k1−k1k kkk#!> $ H-% :8' F>">G %?5: F>4/G F>40G 5-DA%? dq E 56)' ) ,22pnk= tan xq 2 − k 2 + p2n %75&: %?5: -5' )-, 9<56, (< %@, E -% ]! 0^(1s)I1 (T )(1s)T −1I2 (T )π==1 − exp − √2meTy1 − 11 − exp(− √y2π)1 −1−2y1 − 2× exp √arctan √y1 − 12 y1 − 1416,× 1− + 2y1 3y1F!GT −12π=1 − exp − √y2 − 11 − exp(− √y4π)2 −1−4y2 − 2× exp √arctan √y2 − 12 y2 − 18804481792,× 1− + 2 −+y2 3y2 15y23 15y24F#G2me2π=1 − exp − √y2 − 11 − exp(− √y4π)2 −1y2 − 2−4arctan √× exp √y2 − 12 y2 − 18804481024,× 1− + 2 −+y2 3y2 15y23 15y24F4G(2s)I1 (T )(2s)I2 (T )#!/(2p)I1 (T )(2p)I2 (T )?- yn2πT −11 − exp − √=y2 − 11 − exp(− √y4π2 −1 )−4y2 − 2× exp √arctan √y2 − 12 y2 − 18070433288,+× 1− + 2 −y2 3y2 15y23 45y24F"G2me2π=1 − exp − √y2 − 11 − exp(− √y4π2 −1 )−4y2 − 2× exp √arctan √y2 − 12 y2 − 1880704512× 1− + 2 −+,y2 3y2 15y23 15y24F>G= 2me T /p2n ≡ T /|En|#!0! ! BE -& 7 5- 95%: %',%E 55 %-? %5 A6D )?? :7'95% 7:%: 95% FQE#QG aa H6 1B !=// 4 #=2$4 !# -& E 56< E B )? :7@ 95% 7:%: 95% ) %E 55 &6 %%55& 5 aa 1B !=/2 >> ! 4=$! "/4 pRfZZgVRi c ME rfRVWgV p cWgYRfU ikZTUkxYTkVW Vw TjQ VYTgVkWg QRQSTUVWZ kWQRQSTUVWkS kVWkfTkVW aa ej\Z dQh !=/2 {VR !0> e !>!$!>=" |U } cXfRikE Mgkik cE NfUSVWQUV dE ekQRRf p }ZQ Vw f TzV njfWWQRTUVWSVkWSkiQWSQ kW f WQz RkWQ Vw UQZQfUSj kW fTVXkS [j\ZkSZ aa dQh OSk rWZTUYX!=/= {VR " e ! !$! 4> nfXkRRVWk dE pYkiVWk c pkfUikWkE skUkxQRRk d nVkWSkiQWSQ XQfZYUQXQWT VwYfZkwUQQ ZSfTTQUkWg Vw =.yQ{ QRQSTUVWZ VW K fWi L ZjQRRZ Vw SfUxVW aa ej\ZdQh lQTT !=0# {VR #= e /!2$/#!/ MWQUg\ fWi fWgYRfU SVUUQRfTkVWZ Vw TjQ ZSfTTQUQi fWi QQSTQi QRQSTUVW kW TjQ QRQS@TUVW.kX[fST kVWkfTkVW Vw fUgVW aa ej\Z dQh lQTT !=04 {VR 4 e "0>$"020 qVVi O sE sQYxWQU e | uE NSnfUTj\ r ME QkgVRi M cWgYRfU SVUUQRfTkVWwVU (e, 2e) UQfSTkVWZ VW fTVXZ aa ej\Z dQh c !=04 {VR 2 e #"="$#"> 2 -& E H E B 15%' 56'%' %E 55 % 5 aa B !=== !/= !!!!$!!4== sfyfjfZjk N lVVykWg fT XVRQSYRfU VUxkTfRZ kW TjUQQ.ikXQWZkVWfR wVUXC wUVXiUQfX TV UQfRkT\ aa YRR njQX OVS |[W # = {VR 2# e 0>!$000! QkgVRi ME NSnfUTj\ r M MRQSTUVW NVXQWTYX O[QSTUVZSV[\ oQz VUyC~RYzQU cSfiQXkSaeRQWYX eYxRkZjQUZE !===!! eV[Vh rWhQZTkgfTkVW Vw f TjUQQ.SjfUgQi.[fUTkSRQ xUQfy.Y[ ZSfTTQUkWg fX[Rk@#!2TYiQ aa | ej\Z C cT NVR ej\Z !=2! {VR !" e #""=$#">0!# VUxfZ | eQUTYUxfTkVW TjQVU\ wVU TjUQQ [fUTkSRQ nVYRVXx ZSfTTQUkWg aa rWT |sjQVU ej\Z !=2! {VR # e =#!$=>/!4 qVjU nE VUW cE offUk QT fR MRQSTUVW kX[fST kVWkfTkVW kW TjQ [UQZQWSQVw f RfZQU QRiC f ykWQXfTkSfRR\ SVX[RQTQ (nγe, 2e) Q [QUkXQWT aa ej\Z dQhlQTT # > {VR =" e !>4# ! ]" [fgQZ^!" qVjU nE VUW cE offUk QT fR lfZQU.fZZkZTQi QRQSTUVW.kX[fST kVWkfTkVW VwfTVXZ aa | MRQSTUVW O[QSTUVZS # 0 {VR !/! e !0#$!00!> NkTTRQXfW N q rWTUViYSTkVW TV TjQ sjQVU\ Vw lfZQU.cTVX rWTQUfSTkVW oQzVUyE }OC eRQWYXE !==4!/ |VfSjfkW n |E ~\RZTUf o |E eVThRkQgQ d N cTVXZ kW rWTQWZQ lfZQU mkQRiZnfXxUkigQE }~C nfXxUkigQ }WkhQUZkT\ eUQZZE # !!!0 mUfWSyQW eE |VfSjfkW n | sjQVUQTkSfR ZTYi\ Vw QRQSTUVW$fTVX SVRRkZkVWZ kWkWTQWZQ RfZQU QRiZ aa | u[T OVS cX !== {VR 0 e >>"$>/4!2 MjRVTy\ mE |fUVW cE ~fXkWZyk | MRQSTUVW$fTVX SVRRkZkVWZ kW f RfZQUQRi aa ej\Z dQ[ !==2 {VR #=0 e /4$!>4!= MjRVTy\ m cTVXkS [jQWVXQWf kW xkSjUVXfTkS RfZQU QRiZ aa ej\Z dQ[ # !{VR 4"> e !0>$#/"# fXffyk NE ~fZfk E ukZjk ~ QT fR QhQRV[XQWT Vw fW (e, 2e) QRQSTUVWXVXQWTYX Z[QSTUVZSV[\ f[[fUfTYZ YZkWg fW YRTUfZjVUT [YRZQi QRQSTUVW gYW aadQh OSk rWZTYX # !4 {VR 2" e /4! > ]! [fgQZ^#! fXffyk NE ukZjk ~E ofyffzf q QT fR NVRQSYRfU VUxkTfR kXfgkWg Vw TjQfSQTVWQ S Q SkTQi ZTfTQ YZkWg TkXQ.UQZVRhQi (e, 2e) QRQSTUVW XVXQWTYX Z[QS@TUVZSV[\ aa ej\Z dQh lQTT # !> {VR !!" e ! 4 > ]> [fgQZ^## QUfyifU | eUVxkWg TjQ Z[kW [VRfUkfTkVW kW wQUUVXfgWQTZ aa ej\Z dQh lQTT!=== {VR 24 e >!> $>!>4#4 OfXfUkW OE QUfyifU |E cUTfXVWVh u NE ~kUZSjWQU | {kZYfRkkWg Z[kW.iQ@[QWiQWT QRQSTUVWkS SVRRkZkVWZ kW wQUUVXfgWQTZ aa ej\Z dQh lQTT # {VR 2>e !0"/$!0"=2#!=#" NVUVVh cE QUfyifU |E OfXfUkW O o QT fR O[kW.SVUUQRfTkVW kXfgkWg VwQRQSTUVWZ kW wQUUVXfgWQTZ aa ej\Z dQh # # {VR /> e ! ""#> ]! [fgQZ^#> OSjYXfWW m uE kWyRQU nE ~kUZSjWQU | QT fR O[kW.UQZVRhQi Xf[[kWg Vw Z[kWSVWTUkxYTkVW TV Q SjfWgQ.SVUUQRfTkVW jVRQZ aa ej\Z dQh lQTT # ! {VR ! "e 20/ # ]" [fgQZ^#/ QUfyifU |E fZ N e MRQSTUVW QQSTkVW wUVX SRQfW XQTfRRkS ZYUwfSQZ Y[VWSjfUgQi [fUTkSRQ kX[fST aa ej\Z dQh c !==0 {VR >/ e !" 4$!"!4#0 QUfyifU |E OfXfUkW O oE qQUUXfWW dE ~kUZSjWQU | NfWkwQZTfTkVWZ Vw QRQS@TUVWkS SVUUQRfTkVWZ kW TjQ ikUfSTkVW Vw QRQSTUVW [fkUZ wUVX SU\ZTfRZ aa ej\ZdQh lQTT !==2 {VR 2! e 4>4>$4>42#2 QUfyifU |E pVRRkZSj qE mQiQU d efkU SVUUQRfTkVW kW TzV.QRQSTUVW QXkZZkVWwUVX ZYUwfSQZ aa OVRki OTfTQ nVXXYW !=== {VR !!# e >20$>=!#= pVRRkZSj qE OSjQYWQXfWW sE mQiQU d Nf[[kWg Vw TjQ QRQSTUVWkS ZTUYSTYUQ VwZYUwfSQZ x\ RVz.QWQUg\ (e, 2e) Z[QSTUVZSV[\ aa OVRki OTfTQ nVXXYW # ! {VR!!0 e /=!$/=>4 OfXfUkW OE cUTfXVWVh u NE OQUgQfWT c QT fR MWQUg\.