Диссертация (1097858), страница 6
Текст из файла (страница 6)
/ ) $ H5%6D -((<56 & FmnOG 78-, <E .- : %'' 95%E %6 ]=>$=0E==^dσks ke 1|ks ke |T |k0 i + ke ks |T |k0 i|2=5dEsdEe dΩsdΩe(2π) k0 i4occ3+ |ks ke|T |k0 i − ke ks |T |k0 i|24×δ(Es + Ee − E0 − i ).F4!G`-6E -:-A ?5E %5: Ω ?5: )-D% 5' :@5% &: 95% %.%: |k k |k i %&D% %%%& %%& %'D F%.%%G - 9%:95% : 56 k E k &56 %%&%'D F.%%G -95%, %: ) 5%DA? 95% : 56 k 95% ; -95% %'|i -%' )'%: -95%: %'' @; 9?, = E +E −E % T -%5'% 7, 9((%:,s/es es0ise0e0!4 = (e, 2e) 2 $&% > $ 3 )$4%+ )3% +!"% - Ft.%GE %:, %&% (e, 2e) < -5?@%' )'A % 758 )8? % FwUVQW.SVUQf[[UV kXfTkVWG ? 8 (56 -%%6E T = V + W + (V + V + W )G (E )(V + W ),F4#G?- V E V W P 9((%: F 7A 5& %&G %<5: )@-,%' 95% ;6D 8- 7, %%% G (E ) P))-:DA' (<' - 95% , 9?, E =E + E E -8A' %<5 V + V + W -5%'% DPv?G (E ) = G (E ) + G (E )(V + V + W )G (E ),F44G?- G (E ) P 7-' -95%' (<' 5 ?&' % - F4#G %56 &5 ? @'- 95%.95% %<5 W 758 7:&7:%' :7 % FE E ΔE = E − E )E% 56: 9 95%.95%? )-,%' %@-%56, ; F DE E %: %G 7)E 5& 7 758 8: 5 FcGT = 1 + (V + V )G (E ) W [1 + G (E )V ],F4"G?- -95%' (<' G (E ) %<5 V + V -%'; 5-DA? ' Pv?CG (E ) = G (E ) + G (E )(V + V )G (E ).F4>G&%:' F4"GE 8 -%%6 & mnO F4!G -sss+seetotse+setottotse+se+0+0tottotse+0tots+seetottot0s+s,ee+s,etot+s,e+s,etot+0totdσks ke =dEsdEedΩs dΩe(2π)5k0 i+0tot0stottotsse+s,esetot1 (−) (−)(+)(−) (−)(+)|χks χke |W |χk0 i + χke χks |W |χk0 i|24occ3 (−) (−)(+)(−) (−)(+) 2+ |χks χke |W |χk0 i − χke χks |W |χk0 i|4×δ(Es + Ee − E0 − i ).F4/G!>`-6F40GF42G?- j = s, e V ≡ υE g Fg G P ))-:DA' F8DA'G (<' 95%E -8A?' %<5 υ1((% 9' K?5?L 95%.95%? )-,%'υ 8 &%6 A6D -95%&, (< ε 5-DA 7)C1,W (r, r ; ω) = dr ε (r, r ; ω)υ (r , r ),υ (r , r ) =F4=G|r − r |?- ε P 7%' -95%&' (<'E 9?%&, ?% ωFω = E −E 5 ω = E −E )% % &? %'' -DA? %6 95%G &%:% 9((%: -&? 9'H 5& %5'<, % ; 5 5@556 % %'' F40G F42G ?% 7:%6 5&: -&, % -(< -5: 95% FlMM P i\WfXkSfRRVz.QWQUg\ QRQSTUVW ikUfSTkVWG ]!0#E!04^ 35 %?E % %8F 4!G 5& -%%& 7:%: 5%DA 95%E 77@-DA %6 - 5: ?5 5 Fθ 1GE 8 -%&, % lMM ]!0"^ ?&%6' (<' χ χ %56: '- )58' %% )-,%' ' -&@' -56 < -)%E &% -DA, 95% )-,%% 95% ; - 5 5 -%? )-,%' @%6DE % -% ? %8D 7% 9% 758@ & mnO 8 -%%6 - ]=/^dσkk =|χ |M(k , k )|i| δ(E + E − E − ), F4! GdE dE dΩ dΩ(2π) kik0 r+ dr eik0 r υ(r )g + (r, r; E0),(−)ikj rχkj (r) = e+ dr eikj r υ(r)g − (r, r; Ej ),(+)χk0 (r)= e−+jee −1eeee−10s0e0(+)k0seses e50 iocc(−)kes02se0(−)ksi?- 9((%:, -95%:, % - %6M(ks , k0 ) = ks |Vs g0+ (Es)W + W g0+ (E0)Vs |k0 .F4!!G!/`-6 g P 8DA' (<' 7-? -8' 95%56? A' - 78-? <)5'% -7%6' ?%' %5 F 4!G %&, @% %- 1E %' 56)%' 5& (e, 2e) 5-, %5 ]! ^ ,%%56E 5 5): %& 5' )@?? :7' 95% ) ;E 9?' 95% E ≈ E ≈c 8 ?&%6' 5@E /2 ∼ 20 − 30 9 %5A 5 ∼ 100 − 300 5: 758 %'' F40G F42GE &% 95% 7@ 758D 5 5 FecG 1((%: 9' F4=G ?D% 5 %56 756; )&' -: 9? 56@ F D ( )&' 95%: 9? 56 ;GE 9% & mnO % +0se0dσks ke=dEs dEedΩsdΩe(2π)3k0?- !&"dσdΩ eedσdΩA− (k, ),eeF4!#GP %% & 95%.95%? '' F!>G 5@A− (k, ) =F4!4G|k|i|2 δ( − i )iocc-%5'% 7, % ):D %56D (<D -: 5:% k = k +k −k 9?, = E −E %56' (<' F4!4G-8% 75 -%56D (<D 7 -95%, %% @; F%, 5G H56 )&' kE mnO -5'D%' 9@%E (<' A (k, ε) 8% 7:%6 ) -%E )@% % -: ;es0tot0− /") 5' :&5' 9? %<5 8- 95% F4=G%7%' ) 7%, -95%&, (< ε E %' 5-DA−1!07) ') -95%&, (<, ; εCF4!"G 8 %&56 )-5 4!E ?% %5 756; )&@' -: 9? 56 9((%: 9' )&%56:H9% 8 78-%' %56 5&, ?% %8H%6 6 z 5 5 %E 7)< )5'%5%% z < 0 F 4!G 5& %55&? 7)< @ε(r, r ; ω) = ε(r + A, r + A; ω),ε (r, r ; ω) = ε (r + A, r + A; ω), F4!>G?- A P % ;%E 5556:, % 7)E ε ε8 -%%6 -dQε(r, r ; ω) =eε(Q, z, z ; ω)e, F4!/G(2π)−1dr ε(r, r ; ω)ε (r , r ; ω) =dr ε−1(r, r; ω)ε(r, r ; ω) = δ(r − r ).−1−1−1i(GR−G R )2G,G−1ε (r, r ; ω) =iQ(R−R)G,G1st BZi(GR−G R )eG,G1st BZdQ −1iQ(R−R)ε(Q,z,z;ω)e,(2π)2 G,GF4!0G?- r = (R, z) r = (R , z )E G G P % 7%, ;%E 5556:%E %? dQ -%' , ) 355D9 F1 P UZT UkRRVYkW VWQG 7%, ;% 56)' F4!0GE -5' 9?5? %<5 F4=G 5&stW (r, r0; ω) =i(GR−G R0 )eG,G1st BZdQ eiQ(R−R0)2π |Q + G|−|Q+G ||z −z0 |.× dz ε−1G,G (Q, z, z ; ω)eF4!2G5 7&6 (<' ε ε %55& 9((%E %−1F4!=G−1ε−1G,G (Q, z, z ; ω) = δG,G ε (Q + G, z, z ; ω),?- -5?%'E &% Q ∈ 1 E E 5-%56EstW (r, r0; ω) =dQ eiQ(R−R0)2πQdz ε−1(Q, z, z ; ω)e−Q|z −z0 | .F4# G!2H-%5' F4!2G F4# G ?% 7:%6 7 5): 5& @56)' 5-DA? )58' -5' 95%: %', F4/GCχ (r) =C (G, z)e,F4#!G(±)kG(±)ki(K+G)R?- k = (K, k )95%& %% %55& ;,E &6 ,%; 7b''% %' 7-: 95% FE cR 5 QGE 8@ 5 -% %6 -5 :8-? ?) 95% ;E -8 %: -% -- ( 58%56)'8: ?& %: %<56: 76 F%):' -56 K85LG : %-% -95%&@? %5 % K85L.-7: % '): 5& %E @56 -95%& ,% ) 'D%' ?< %55.@ 8 % : - )8: -- ;D 9%, 75:z 3 3 +-56 )56? %8' FOdN P Z[QSYRfU.UQQSTkVW XViQRG ]!0>^ &@% 56)%' ; )5&: )-& () )-,%' )'8@: &%< %-: %5E DA 5D %6 -,-5 %:, %<56:, 76 -5?%' <:-5' 95% 7)<E % &% )56 %8D%' % %H 9% < %8' :%' 5& P %(<' -@DA, %8, 5 &%:%' H%<5 -5 )56?%8'E )-:, -5 )'- ρ(r, t) 75) %E @ FE E 7% ]!0/^ <%D % 5%%GV (r, t) = V (r, t)Θ(z) + V (r, t)Θ(−z),F4##G?-+V± (r, t) =dQ(2π)2−dωV± (Q, z; ω)ei(QR−ωt).2π!=`-6F4#4GV± (Q, z; ω) = 4π[U±(Q, z; ω) ∓ ρ̃(Q, ω)ν±(Q, z; ω)],?- F56)' 7)& q = (Q, q )GzU+ (Q, z; ω) =dqz ρ+ (q, ω) iqz ze ,2πq2U−(Q, z; ω) =dqz ρ− (q, ω) iqz ze ,2π q 2 εb (q, ω)F4#"Gρ± (q, ω) = dr dt ρ(R, ±|z|, t)e−i(qr−ωt) ,ν+(Q, z; ω) =ρ̃(Q, ω) =dqz 2Q iqz ze= e−Q|z|,22π qν− (Q, z; ω) =1[U+(Q, 0; ω) − U−(Q, 0; ω)],1 + εs (Q, ω)2Qdqzeiqz z ,22π q εb (q, ω)F4#>Gεs (Q, ω) = ν− (Q, 0; ω).F4#/GB<' ε (q, ω) F4#"G F4#>G -%5'% 7, -95%&D (@<D 7b? FxYRyG %5E % %5E )5'DA? %@% B<' ε (Q, ω) F4#/G P % ):' %' -95%&@' (<' ]!00^_%7: 56)%6 -56 )56? %8' -'A' )-6%.& %E )'-D 5%%6 ρ(r, t) 5-% )@%6 %%%DA % ρ(r, t) = e ρ(r)e E ?- H P ?56@% -DA? 95% &-E &% &%% ω -, 9@? ΔE = E − E H56 ρ(r) = δ(r − r )E ?- r P -.% -@DA? 95%E -5' 7%, -95%&, (< F4# G )56%%bs−iH0 t0s(e)0iH0 t00!!-ε−1(Q, z, z ; ω) = Θ(z) δ(z − |z |)Θ(z0 )−−Qz2e[δ(z )Θ(z0) − κ(Q, z ; ω)Θ(−z0)]1 + εs (Q, ω)+Θ(−z) [κ(Q, z + z ; ω) + κ(Q, z − z ; ω)]Θ(−z0)+F4#0G2ν−(Q, z; ω)[δ(z )Θ(z0) − κ(Q, z ; ω)Θ(−z0)] ,1 + εs (Q, ω)?-∞κ(Q, z; ω) =−∞F4#2Gdqz eiqz z.2π εb(q, ω)5-% %%%6E &% 7%' -95%&' (<' F4#0G )% %%?E -%' 5 5%DA, 95% % Fz < 0G 5 Fz > 0G;00 *.+ !'% $- ) 75 )%: %- ' -95%&? %5@ :8-? 95%? ?) 8 )%6 758 5&,:() Fdec P UfWiVX [jfZQ f[[UV kXfTkVWG ]!02^ 7b' -95%&'(<' ε : 7:5 5& -? %- -- ]!0=^5' 5&' 57&? 7)<E )5'DA? %56 5 @%%E &6 5) %%& 5- 7:5 :5 6D ]!00^ %5 75 -95%&? %5 57@&? -56? %55 758' 5&,: ()E -@5?' - -5 )56? %8' 7&:, %:, @%<56:, 76 Fdec.rG H)-E 56)' 758 )56?%8'E B 3;%-% - ]!2 ^ 5&5 :8' -5' 9?b!!!5? %<5 7%, -95%&, (< -E @7% 8 I? - ]!2!^ 7:5 %&E &% )56%% B 3;%-% - 56 :% 5 )78' &%6 -& 9@? 5? %<5 :&5' 8 I? - 56)5 ;' -5' %<5E 5&: 6D ]!00^ -5 dec.r -5' ?5:,E 9:, %<5 -56%.(@<,E 5&5 -5' 7%, -95%&, (<−Qze[δ(z ) − 2κ(Q, z ; ω)Θ(−z )]ε−1(Q, z, z ; ω) = Θ(z) δ(z − z ) −1 + εs (Q, ω)+Θ(−z) [κ(Q, z + z ; ω) + κ(Q, z − z ; ω)]Θ(−z )+F4#=Gν−(Q, z; ω)[δ(z ) − 2κ(Q, z ; ω)Θ(−z )] ,1 + εs (Q, ω)?- (< ν (Q, z; ω)E ε (Q, ω) κ(Q, z; ω) -5: F4#>GE F4#/G F4#2G%%%8 )%%6E &% :8' F4#0G F4#=G D% 8D %@% 35 %?E )56%% F4#=G 8 (56 5&%6 -@5 )56? %8' 5& -56? -56%.%<5 υ (r, r ) =δ(r − r ) -E -5?%'E &% -56 dec.r F4#=G %8 -5@ 5& 5 %<5 F -%5 ]!2!^G 5 5-?7%'%56% --: OdN dec.r ):D%' 95%:−see00 (e, 2e) & !$! $ 5%% 7:& 78-D%' - : ) '%&: 95% %55&, % )56%% 77-@ 95% ]!2#^C !G ' ' &56: F&:G 95%@ 95% 5%, ): F5 ): -%GJ #G - 7b@!!#? %? 5)E )78-: &56: 95% @- 7b? 5) - 95%.-:&D -5'%' 8@): -E %: 5& -55: 5) '5'D%'%& %56: -, ), -5 K85L 8@): -: %%%D% E E 758 5&,: () @- 5) - 95%.-: )8 %56 5 ? 56:;% % %& )&E P ?- -'' 5) 5%' 95%.-:&: % H%,;,<, ) '? :7' -5?% -% 95%@95% 'E % A%5'%' )56%%E 7A ?'E9? )-,%' 8- 95% &% 9((% -@&? 9' 8% -%6 ) 5D 95%@95%? %<5 )&' -, 9?E %&DA)78-D 55%: -E % 7b:, %:, 5)@: ' 7%6 8%E D &-6E '%6' - 756;?% :- %&: 95%E ?- 9?'E %'' &56, )@'8, &%<,E -%' ) 9?, 5) FE E7% ]=2^E ?- &% 77-DA &%< %D%' %:G&-E &% - 5& )-5 - ) %%' 65:E 56 9((%: )78-' - 5) 8 &%: -& 9 9% )-5 -%' 5) &5: )56%% -5' (e, 2e) @< %' %55 cR Q <56D 5-' 5 %@: 5): ) ) ' %&: 95%:7 cR Q 755 %E &% - %55E &6 95%: ,%; 7b''% %' 7-: 95%E 75D-D%' 75 ;, 7b: 5): ): %%% F%@%56 5&: 9? 5) 9% %5G 5' -5%%%' % -? 9%56? 5-' ?@!!4% %8 % %55 cR ]44^ - (e, 2e) 9@% 9?%& % &: 95% )'56 &56:9? E = 100 9 ?5 -' θ = 30 8 )56? %8'E% θ = 30 E - %&: 95%E A: ?5 θ = 60 %%56 5 % F 4!G &@% &' mnO F4/G 56): -95%: %''E %@: ?5 -5 7-: 95% %55E %' 7?%%55& 9((% %%%DA -%5 -: H5@8 3 95%&, %5 % &%:5' --OdN dec.rE : -:-A )-5 8-:, ) )% %-5 -95%&? %5 7b? %55 P ?&? @%55&? 7)<E )5'DA? %% 8 -'%' -758' -5' -95%&, (< 7b? %55 @-5 7-: 95%E %: 56): %'A &%C !G758 PB Fsm P sjVXfZ.mQUXkG ]!24^ #G ?--&@ 758 Fqc P j\iUVi\WfXkS f[[UV kXfTkVWG ]!2"E!2>^ %' %%56D %%E 9% 758' 9((% &%:D% :%: &%: %%&? -&? 9' 7b:%55 %?E 56) &% 75?&% < &5@: :&5,E -5' ? 75 )&: %5:0◦0◦se◦ *.+ A B C 9%, ; )%, -5 &%:D%' 9((%: -&?9'E -95%&' (<' % λε (q, ω) = 1 + ,F44 Gq?- λ P %% 9 5' )%? ?) 7-: 95%2bλ2 =4kF,π2kF =√2F ,!!"?- k 7)&D% ( 9?D 56 %%% @56)' - ?P`,%< r E 8 )%6FFsλ =2Fr12π2/31rs-5' cR r = 1.87 -5' QG5' (<,E (?DA :8' F4#0G F4#=GE @-5 PB -s= 2.07sλ2 −Λ|z|eκ(Q, z; ω) = δ(z) −,2Λ?- Λ =Q2 + λ2ν− (Q, z; ω) =Q −Λ|z|e,Λεs (Q, ω) =Q,ΛF44!G ! .+ % ? '5' 75 2 5% )- ]!2"^ ?--&758 )56 &6 5): )'-? %% %& ,% - 5 -%% 9%, -5 )5D&@%' %% &% %%, -Cω,ε (q, ω) = 1 +F44#Gβ q − ω(ω + iν)?- &%% 7b? 5) ω 2bb2 2b√ωb = 4πn =3.rs3`-6 n 7)&% 95%D 5%%6 H% β )% % ωC⎧⎪1⎪⎨υF ,3β=⎪3⎪⎩υF ,5ω ν;ω ν.F444G1% ).
:&%%: -5: 8 )% A6D @%5'<, (5: ]!2/^ω + iνυ .β =F44"Gω + iν235132F!!>_%% %5, ν 8 <%6 ν ∼ Γ E ?- Γ P ; 7b@? 5)? ) FΓ = 0.53 9 -5' cR Γ = 4.7 9 -5' QG `%E&% 758 PB F44 G 5&%' ) F44#G -5 ω → 05' (<,E (?DA :8' F4#0G F4#=GE ?-@-&? 758' plplplplωb2 e−Λ|z|,2β 2 Λωb2 e−Λ|z|ω(ω + iν)e−Q|z| Q−,ν− (Q, z; ω) =ω(ω + iν) − ωb2Λ ω(ω + iν) − ωb2ω(ω + iν)Λ − ωb2 Qεs (Q, ω) =,[ω(ω + iν) − ωb2 ]ΛΛ = −iβ −1 ω(ω + iν) − ωb2 − β 2Q2κ(Q, z; ω) = δ(z) −F44>GF)-6 -5?%' ' %6?--%? 'E %' -% Re(Λ) > 0G ,)' 4# ) 5 -5 9?' '@? F&?G A? F%&?G 95%E 5& 5@& -95%&, (< -5 )56? %8' F4#0G -:&%: )5&' 8- 5&' -5 PB ?--@&? 758' %% 5& sm 75D-%' 5: )&' 9? %&? 95% E ∼ 1 9E ?- 5&% 9? &: 95% ΔE = E − E :;% 7% :@- Φ = 4.3 9 75)%56 % 8 )& 1% ):% %E &%%&:, 95% %' 9?%&? ' 75)? @D B % ΔE %%6 -% 9% 75D-%'5-DA' %-<'C ( )& ΔE %&: 95%@: A% D%' 9?'E 75) ? )@&D E = ΔE − ΦE % %&% 5&D = H5- 75D-@ 7b''%' %E &% 5%%6 %', 56 (?e0sFeiF!!/' %5& % -5 PBE %%6 5& ?-@-&? 758' % 56:, )5 )&' ΔE ≈ 11 9E% 56 :;% 9?D %? 5)? )√ω = ω / 2 = 10.5 9 H&, %? )? -' '5'D%' @5D (< (3.27)E ?- 1 + ε = 0 H7?' 9((% - )%' 5)? ) ?--& 758 F44#GE% 5?' β = 0 ν = 0E 5& ) F44>GE &% 5D %&% @-%' ΔE = ω 1((%: - )%' 755D% -? &D ; 75D-? )? _5: )56%%: -5' 5? 9?%&? -@5' &, 95% 5& -5 dec.r -5' -95%&@, (< F4#=G -%5: 44 -5 758PB &6 75) %%%DA -5D 5&-5 )56? %8' F 4#G -E -5 ?-@-& 758 %5&%' % 5?&? 4# ,@%%56E -7 E ') %: 5)E 5ΔE = 15 9 '5'%' -?,E 75 ' :8:, H' @E &% ω = 14.9 9E &-E &% 9%% 755 9((% -&@? 9'E '): )78- 7b, 5), -:%%% %? 5& OdN ? '5 5& dec.r 5-%) ' :8, F4#0G F4#=G 7b: 9((%: 9' 7 -5' '): (<, F4#2G 7)E -5 )56?%8' F4#0G 9% 9((%: ?D% 56E %56 ?- 5%DA, 95%% %6 %55 Fz < 0GE % ' -5 dec.r F4#=G &D% ):%6' A ?- 5%DA, 95% -8%' 56' 5& -, -5: 7-? 7? 5%DA? 95%@ - ?? %5' -% 5: ?57 'E56 ?&' % 7) 5- 7b: 9((% 5& OdN 4" %5'D%' )56%%: &% % ):: '%@sbssb0!!0 = & $ % % ! *% $48P! $ & 3 K &L ' Q )-R! $4% + && 3 )?8! 3%+ & &% 12 S >% % % % (e, 2e) 2 E0 − Es − Ee ≥ Φ! & Φ ' $4&!!2 == L 3! = ! $ & O58D:7!!= =B M$ $4& $4 $ $4 8P $ !% $ ! $ 4 &% 0OT O58D:7 A $4 $ 3 -R! 3 ' $ 3 ?8!#%: -((<56: &, F>nO P hQ.wVRi ikQUQWTkfR SUVZZ ZQSTkVWGE%: 5&D%' ) &, mnO F4/G %? 9? %@&? 95% E E 56) -- OdN dec.r &-E&% & >nO %)% )%6 :- %&: 95% %, ?% % 9? ΔE E %', &: 95%@ %%% sm.)56%% 4# 44E sm.)56%%: 4" 75) -? -?C &' % % ?, 9? ΔE = ΦE-%?D% ΔE = 7 − 8 9E )% % 7:D% - 5' ΔE ≈ 16 9E &% :) ?& |K + K − K | ≤ k E 5-:@: %7 ' ? 56 95%, :E @5556? % qc.)56%%: '- 756; 5&E &sm.)56%%:E ):' % : 56: 9((%: -&? 9@' %%% 4# 44E qc.' 4" 5& OdN% %56 - E '):, )78- %, 5),-:E %?- qc.' 5& dec.r % - E 755:)78- %,E % 7b, 5), -: %@%6 E ')? %: 5)E 5& OdN &% - '- 756;E & 5& dec.r H58 %%6 E')? 7b: 5)E 5& dec.r -5'%' ?5: 7@) %(<, 9((% 5)? 5D -95%&, (@< 7b? 7)< ?--& 758 %&9((%E '): 9? 56 F5556? @%G 95%, :ese0F " /' 4>E 4/ 40 -%5: )56%%: &5: &% -5'% 8 5&E &% 4#E 44 4" %%%E -5' %55Q )5&' D )56%% -5' cR 5& ?--&@? 758' 8 7b'%6 75 ; 5): ) !#! =F L 3! = ! $ 7G!## =" L 3! ==! $ 7G!#4 =9 L 3! =B! $ 7G!#"Q &%%E ) 5): - qc.)56%% ? 57 ; 56 ;: 5)? ) Γ ' - ) ' qc@)56%% -5' cR Q 56) -5 )56? %8' H5@' ; 5 :%: FmqN P wYRR zkiTj fT jfRw Xf kXYXG E75D-: qc.)56%% 5& OdN 4" 40E 75@)%56 Γ (Al) = 0.53 9 Γ (Be) = 4.7 9 %%% 35 %?E 56) -5 dec.r 5-: 5): - %- -5'D%' & mnO F 4/G 75 5 '5'D%' %56 & >nOF 40G sm.)56%%: -5' QE %E -56 8 %%%DA@ )56%% -5' cRE 7 5& I%' 8- 8- sm.