Бузов Г.А., Калинин С.В., Кондратьев А.В. Защита от утечки информации по техническим каналам (2005) (1095364), страница 51
Текст из файла (страница 51)
Серийное производство таких генераторов тест-сигнала, по нашим данным, в настоящее время отсутствует и, в основном, многие организации, проводящие специсследования, разрабатывают их самостоятельно. Разработан такого рода генератор и в ЦБИ «МАСКОМ». Также необходим стандартный шумомер с микрофоном, поскольку методики требуют точного замера величины действующего на ВТСС акустического сигнала. Останавливаться на этой аппаратуре не имеет смысла, так как она подробно описана выше. Кроме этого, необходимы, осциллографы (желательно двулучевые С1-151 и широкополосные С1-108), генераторы стандартных сигналов на весь исследуемый диапазон (желательно с цифровой 273 Глава б установкой частоты и амплитуды Г4-176), обычные широкополосные вольтметры В3-38, В3-57, генераторы НЧ ГЗ-112 и множество мелочей типа коаксиальных переходов, кабелей разного рода, пробников, аттенюаторов, коаксиальных трансформаторов и т.д.
Примечание: В разделах, посвященных средствам измерения, намеренно приведены достаточно старые модели приборов общего назначения. Многие из них еще успешно эксплуатируются. Современные приборы с аналогичными и более высокими характеристиками (генераторы, вольтметры, осциллографы и т.д.) без труда могут быть приобретены в специализированных фирмах.
Это дополняется нестандартным оборудованием типа «питающего моста», имитирующего подачу питания на аналоговые телефонные аппараты, различными устройствами, позволяющими имитиооваать нормальный рабочий режим исследуемого ВТСС, его электропитание различными напряжениями (типа испытательных стендов), фильтрами различного диапазона и назначения (помехоподавляющие — сетевые и сигнальные, режекторные, полосовые и т.п.) и, наконец, очень нелишней будет экранированная камера. Сооружение весьма недешевое, но крайне эффективное, когда нужно измерять микровольтовые сигналы в условиях помех большого города. Специальные исследования в области акустоэлектрических преобразований В таком кратком курсе, как этот, невозможно рассказать обо всех возможных «тонкостях» измерений в этом виде СИ.
Однако попытаемся изложить самое основное. Вначале придется коснуться физики происходящих процессов, поскольку без ее правильного понимания невозможна организация измерительных работ и выявление возможных ошибок и помех. Итак, что же является физической основой того, что мы назвали акустоэлектрическим преобразованием? В качестве преобразователей механической энергии акустического сигнала в электрические могут выступать элементы технических средств, обладающие различной природой и достаточно широким спектром физических свойств. В первую очередь, это обратный эффект Фарадея.
Напомним, что он заключается в том, что при движении проводника поперек силовых линий магнитного поля на его концах наводится ЭДС (при замкнутом проводнике — течет ток). Магнитное поле существует всегда (не будем забывать о магнитном поле Земли, не говоря уже 274 Мероприятия по выявлению каналов утечки информации о том, что любая деталь из сплавов железа, некоторых других металлов и их сплавов всегда намагничена). Следовательно, перемещение любого проводника (вибрация, дрожание), особенно многовитковой обмотки, неизбежно вызывает появление напряжения или тока, соответствующих акустическому (вибрационному) воздействию. Поэтому все моточные изделия (трансформаторы, реле, катушки индуктивности, дроссели и т.д.
в составе ВТСС) всегда являются источниками акустоэлектрических преобразований. Кроме того, возникающая под воздействием акустических сигналов вибрация всякого рода сердечников перечисленных компонентов (это более характерно для материалов с высоким ц) вызывает (за счет волн сжатия в материале) изменение их магнитной проницаемости (обратный магнитострикционный эффект, или эффект Веллари), что также вызывает появление сигнала в обмотке. Вторая причина, часто проявляющаяся, это — различные емкостные эффекты.
Если в конденсаторе, образованном некими проводящими элементами, одна обкладка движется относительно другой — изменяется емкость этого конденсатора, следовательно, меняется напряжение на обкладках. Третий, весьма часто встречающийся эффект — это пьезоэффект. Большое число керамических конденсаторов выполняется из материалов, типа ЦТС (цирконий — титанат свинца). Такие материалы всегда обладают пьезострикционным эффектом, т.е. при приложении к ним механического усилия (изгиб, сдвиг, сжатие и т.д.) на обкладках конденсатора генерируются электрические потенциалы, пропорциональные приложенному усилию.
Короче говоря - нормальный пьезоэлектрический микрофон. Есть еще ряд более «тонких» эффектов, но и этого достаточно, чтобы понять основной «закон» вЂ” кМикрофонит все!» И только измерениями можно доказать, что в каждом данном конкретном случае и при строго определенных режимах работы технических средств сигнал акустоэлектрического преобразования меньше нормы. Других способов не существует.
Все изложенное выше касается прямого акустоэлектрического преобразования. Однако необходимо помнить, что в составе многих технических средств всегда штатно работают один или несколько разного рода ВЧ автогенераторов, как синусоидальных, гак и релаксационных. Воздействие на их элементы (конденсаторы, дроссели, системы заряженных проводников и т.д., о чем говорилось выше) механических колебаний акустических сигналов, в общем случае, всегда (во- 275 Глава 5 прас только в какой степени) приводит к изменению амплитуды и/или частоты4изы этих колебаний, т,е к модуляции. ВЧ колебания этих генераторов а той или иной степени излучаются в окружающее пространство и/или распространяются по отходящим от технических средств линиям.
Так образуются модуляционные высокочастотные каналы акустоэлектрических преобразований, которые опасны не столько сами па себе, сколько именно тем речевым сигналом, который модулирует ВЧ колебания автогенераторов. Для этих каналов приходится учитывать и величину (амплитуду) несущей и коэффициент (индекс) модуляции. Рассмотрев вкратце причины появления сигналов АЭП, познакомимся с основными схемами измарений. Учитывая постановку задачи для прямого акустоэлектрическаго преобразования (определение значений сигналов АЭП речевого диапазона частот в отходящей от ВТСС пинии, выходящей за пределы КЗ) типовая схема измерения приведена на рис, 5,12.
Исследуемое техническое средство может быть подключено к реальной отходящей линии, к некому имитатору или не подключаться ни к какой линии (режим «холостого хода»). Рассмотреть все возможные варианты и их особенности в рамках этого курса не представляется возможным, ограничимся только перечислением этих вариантов. Экран. Колонка Рис. БЛ2. Типовая схема измерения прямого АЭП Мероприятия по выявлению каналов утечки информации К отходящей линии (или к выходному разьему ВТСС) подключается измерительный прибор.
Причем это подключение может быть гальваническим (как показано на рисунке) или бесконтактным (с помощью токового трансформатора). Во всех случаях необходимо проводить измерения для всех возможных вариантов подключения: симметрично, несимметрично, два провода — «земля», так называемая цепь Пикара, по «разбитым» парам, если количество проводов более двух, по отношению к посторонней земле, два (или несколько) проводов вместе с использованием трансформатора тока или любым другим способом, который только придет в головуШ Потенциальный противник всегда будет искать способ подключения с наилучшим отношением сигнал/помеха. Выбор из этого множества вариантов ложится на заказчика, или, если заказчик не определяет область исследований— на оператора.
Гальваническое подключение осуществляется, как правило, через стандартный предусилитель вольтметра (например, типа 233-5, 233-6, 233-7 нановольтметров Оп(рап). Установка токового трансформатора может производиться на один провод линии или на несколько одновременно, выбирая наилучшую комбинацию с точки зрения перехвата. Кроме того, применяя токовый трансформатор, необходимо учитывать, что он измеряет ток в линии, а нормируется напряжение в ней.
Следовательно, необходим пересчет результатов измерений через эквивалентное сопротивление линии или источника сигнала АЭП. Исследования любого технического средства необходимо проводить во всех возможных режимах его работы, если не оговаривается перечень режимов, при которых техническое средство будет работать при эксплуатации. Так, например, исследования многоскоростного бытового вентилятора необходимо проводить при включении его на разных скоростях с учетом допустимых отклонений напряжения питания при проведении измерений для каждой скорости.
За конечный результат должно приниматься наибольшее значение опасного сигнала из всех измеренных при различных режимах. В установках прямой директорской (диспетчерской) связи, в которых существуют телефонный (на микротелефонную трубку) и громкоговорящий (на микрофон и динамик) режимы, исследования необходимо проводить как в том, так и в другом режиме, если в задании на проведение измерений не указан только какой-либо один рабочий режим. И таких примеров может быть множество.
Во всех случаях в протоколе исследований необходимо указы- 277 Глава 5 вать все возможные режимы работы ТС с обоснованным указанием, по каким причинам тот или иной режим работы не проверялся. Схема измерения сигналов АЭП от ТС, приведенная на рис. 5.12, достаточно стандартна для теории измерений и особых пояснений, на наш взгляд, не требует. В ней опущены очень важные на практике вопросы заземления приборов, их электропитания, взаимного размещения. Необходимо отметить, что уровень помех в тракте измерения от этих факторов может меняться в десятки и сотни раз.