Диссертация (1095062), страница 24
Текст из файла (страница 24)
Mohammadian, M. Computational Intelligence in Control / M. Mohammadian, R.A. Sarker, X.Yao. – Hershey: Idea Group Inc, 2003. – 346 p.101. Moriarty, D. Forming neural networks through efficient and adaptive coevolution /D. Moriarty, R. Miikkulainen // Evolutionary Computation, 1997. –№ 5. – pp.373-399.102. Nguyen, T.
C.Evolvable 3D modeling for model–based object recognitionsystems / T.C. Nguyen, T.S. Huang, K. Kinnear // Cambridge: Advances in GeneticProgramming. – 1994. – pp. 459-475.103. Nixon, M. Feature Extraction and Image Processing / M. Nixon, A. Aguado.
–Oxford: Newnes, 2002. – 350 p.104. Pal, S. Foundations of soft case– based reasoning / S. Pal, S. Shiu. – New Jersey:John Wiley & Sons, 2004. – 300 p.105. Pasemann, F. Balancing rotators with evolved neurocontroller / F. Pasemann, U.Dieckmann. – Leipzig: Max–Planck–Institute for Mathematic in Sciences, 1997 –pp. 36-43.106. Pasemann, F. Evolving Structure and Function of Neurocontrollers/ F.Pasemann, U. Steinmetz, U. Dieckmann // Washington: CEC 99: Proceedings of the1999 Congress on Evolutionary Computation, 1999. – pp.
22-29.107. Perez–Bergquist, A. S. Applying ESP and region specialists to neuroevolution forgo: Technical Report CSTR01–24 / A.S. Perez–Bergquist. – Austin: The Universityof Texas at Austin, 2001. – 274 p.108. Rabunal, J.R. Artificial neural networks in real–life applications / J. R. Rabunal, J.Dorrado // Hershey: Idea Group Publishing, 2005.
– 375 p.156109. Rempis, C. W.An Interactively Constrained Neuro–Evolution Approach forBehavior Control of Complex Robots / C. W. Rempis, F. Pasemann // Osnabruck:Springer. – 2012. – pp. 305-41.110. Rempis, C. W. Evolving Complex Neuro–Controllers with InteractivelyConstrained Neuro–Evolution : PhD thesis / C.W. Rempis. – Osnabruck: OsnabruckUniversity, 2012. – 240 p.111. Riessen, G.A. PEPNet: parallel evolutionary programming for constructingartificial neural networks / G.
A. Riessen, G. J. Williams, X. Yao // Berlin: 6thInternational Conference on Evolutionary Programming, 1997. – pp. 35-45.112. Risi, S. An Enhanced Hypercube–Based Encoding for Evolving the Placement,Density and Connectivity of Neurons / S. Risi, K. O. Stanley // Journal CambridgeMA. – 2012. – pp. 32- 54.113. Rudolph, G. Self–adaptive mutations may lead to premature convergence / G.Rudolph // IEEE Transactions on Evolutionary Computation, 2001. – Vol 5. – № 4.– pp. 410-414.114.
Sher, G. I. Evolving Chart Pattern Sensitive Neural Network Based Forex TradingAgents / G. I. Sher // Neural and Evolutionary Computing, ComputationalEngineering, Finance, and Science. – 2011. – pp. 47-68.115. Sher, G. I. Handbook of Neuroevolution Through Erlang / G.I. Sher.
– N.Y.:Springer, 2013. – 851 p.116. Siebel, N. T. Creating Edge Detectors by Evolutionary Reinforcement Learning /N. T. Siebel, S. Grünewald, G. Sommer // Hong Kong: IEEE Congress onEvolutionary Computation, 2008. – pp. 3552-3559.117. Siebel, N.T. Evolutionary reinforcement learning of artificial neural networks /N.T. Siebel, G. Sommer // International Journal of Hybrid Intelligent Systems. –2007. – Vol 4. – № 3. – pp. 171-183.118.
Stanley, K. O. Evolving neural networks through augmenting topologies / K.O.Stanley, R. Miikkulainen // Evolutionary Computation, 2002. – Vol 10. – № 2. – pp.99-127.157119. Thierens, D. Non–redundant genetic coding for neural networks / D. Thierens //Utrecht: International Conference on Evolutionary Computation, 1996. – pp.571-575.120. Valsalam, V. Constructing good learners using evolved pattern generators / V.Valsalam, J. Bednar, R. Miikkulainen.
// Washington: Genetic and EvolutionaryComputation Conference (GECCO), 2005. – pp. 189-203.121. Wang, J. Computational intelligence in manufacturing handbook / J. Wang, A.Kusiak // Boca Raton: CRC Press LLC. – 2001. – 560 p.122. Whitley, D. Cellular Encoding Applied to Neurocontrol / D. Whitley, F. Gruau, L.Pyeatt // San Francisco: Sixth International Conference on Genetic Algorithms,1995.
– pp. 460-469.123. Wong, M.L. Data mining using grammar based genetic programming andapplications / M.L. Wong, K.S. Leung // N.Y.: Kluwer Academic Publishers. – Vol3. – 2002. – 228 p.124. Yamamichi, T. Synthesis of binary cellular automata based on binary neuralnetworks / T. Yamamichi, T. Saito // Tokyo: International Joint Conference onNeural Networks, 2005. – Vol 3. – pp. 1361-1365.125. Yao, X. volving artificial neural networks / X. Yao // Tokyo: Proceedings of theIEEE, 1999. – Vol 87. – № 9.
– pp. 1423-1447.126. Yong, C. H. Cooperative coevolution of multi–agent systems: Technical ReportAI01 / C. H. Yong, R. Miikkulainen. – Austin: The University of Texas at Austin,2000. – 287 p.127. Yu, T. Online population size adjusting using noise and substructuralmeasurements: Illigal Report № 2005017 / T.
Yu, K. Sastry, D. E. Goldberg. –Chicago: The University of Illinois, 2005. – 176 p..