Мишустин А.И. - Лекции по физико-химическим методам анализа (1093063), страница 5
Текст из файла (страница 5)
где a1 и a2 - коэффициенты распределения основного вещества и примеси.
Если коэффициент распределения не очень велик, экстракцию проводят несколько раз. Каждый раз из водного раствора извлекается определенная доля вещества. Порции экстрагента затем объединяют и анализируют. Для примера приведем содержание экстрагируемого компонента в водном растворе, если коэффициент распределения равен 4.
Последовательность экстракции | До экстракции,% | После экстракции, % |
1 | 100 | 20 |
2 | 20 | 4 |
3 | 4 | 0,8 |
4 | 0,8 | 0,16 |
4.3.2. СОРБЦИЯ
Сорбцией называется процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями, находящимися на твердом носителе (сорбенте). Различают адсорбцию, распределение вещества между несмешивающимися фазами (растворитель и жидкий поглотитель на сорбенте) и капиллярную конденсацию. На активированных углях адсорбция физическая, за счёт дисперсионных сил. При адсорбции воды, спиртов, кетонов, аминов и др. полярных веществ на сорбентах, поверхность которых покрыта гидрокси- и окси-группами ( кремнезем, оксид алюминия), образуется водородная связь. На природных и синтетических сорбентах с ионогенными и хелатообразующими группами возможна хемосорбция, в том числе ионный обмен, комплексообразование. Наиболее эффективна сорбция с хелатообразующими группами, для группового и селективного разделения и концентрирования ионов металлов. Для сорбции органических соединений применяются сорбенты с химически привитыми длинными алкильными или алкилсилильными группами. Кремнеземы с привитыми молекулами органических соединений широко применяются в аналитической химии. Они могут быть также использованы для очистки воздуха и воды от органических примесей.
Основные количественные характеристики сорбции такие же, как экстракции - коэффициент распределения и коэффициент разделения.
4.3.3. ИОННЫЙ ОБМЕН
Иониты рассматриваются как частный случай сорбентов. Это вещества с трехмерной структурой, нерастворимые в воде и органических растворителях и обратимо обменивающие входящие в их состав ионы на эквивалентное количество других ионов того же знака, находящиеся в растворе. Различают иониты неорганические и органические, искусственные и естественные. Каркас неорганического ионита - кристаллическая решетка минерала типа цеолита или аморфного вещества с мельчайшими порами (алюмосиликаты). В их структуре жестко закреплены функциональные группы, способные диссоциировать в растворителе, при этом закреплённые группы становятся заряженными (фиксированные ионы), а ионы противоположного знака переходят в раствор. Их место может быть занято другими ионами того же знака, находившимися в растворе Ионообменными свойствами обладают различные формы кремнеземов - диоксидов кремния (аэросил, силохром, силикагель, пористые стекла).
Бывают органические иониты природного происхождения , например, целлюлоза, но в технике применяются синтетических ионнообменные смолы. Каркасом служит полимер, содержащий закрепленные на поверхности ионогенные группы. Пример - сополимеры стирола с дивинилбензолом. Функциональные группы вводятся в мономер при полимеризации либо прививаются к полимеру после полимеризации. В зависимости от того, какие ионы переходят в раствор, различают катиониты и аниониты.
Катиониты содержат ионогенные группы кислотного характера, например -SH, -SO3H, -COOH, OH и могут обменивать свои протоны на катионы из раствора:
R-COOH + Me+ = R-COOMe + H+
Аниониты содержат закрепленные группы основного характера, например NH2, N(CH3)3OH, -NH(CH3)2OH. Они могут обменивать анионы в растворе:
R-N(CH3)3OH+Cl- = R-N(CH3)3Cl+OH-
Амфолиты содержат одновременно кислотные и основные группы.
Ионный обмен обратимый и может характеризоваться константой равновесия; рассмотрим реакцию обмена ионов А (сидящих на ионите) на свободные ионы В в растворе:
ИОНИТ-А + В+=ИОНИТ-В +А+,
при достижении равновесия ионит и раствор содержат ионы А и В в соотношении, определяемом константой ионного обмена КАВ:
КАВ=СВиСАр/CАиСВр,
где САи и СВи - равновесные концентрации ионов в ионите, САр и СВр - равновесные концентрации ионов в растворе. Константа ионного обмена КАВ дает количественную характеристику способности ионита к обмену с теми или иными ионами в растворе, то-есть преимущественной сорбции одного из двух обменивающихся ионов, и называется коэффициентом селективности.
Наряду с коэффициентом селективности для количественной характеристики ионитов используется коэффициент распределения Кр=Ви/Вр, который представляет собой отношение концентраций иона В в ионите и в растворе к моменту достижения равновесия. Таким образом, Кр характеризует степень извлечения ионитом растворенного иона.
Отношение коэффициентов распределения двух ионов, разделяемых в одинаковых условиях, называется коэффициентом разделения, который характеризует способность данного ионита к разделению смеси двух различных ионов в растворе. Если коэффициент разделения равен единице, то разделение смеси этих ионов невозможно.
Сорбционная способность ионитов оценивается емкостью: в миллиэквивалентах сорбированного иона на 1 г массы ионита. Неорганические иониты имеют невысокую емкость (менее 1 мэкв/г.), а ионообменные смолы имеют емкость 3 - 8 мэкв/г.
Иониты применяют для разделения неорганических веществ.
4.3.4. СООСАЖДЕНИЕ
Соосаждение - увлечение микрокомпонента смеси осадком, образуемым в результате реакции макрокомпонентом. Микрокомпонент не может образовать собственной твердой фазы, а присоединяется к осадку макрокомпонента (который называется коллектором) за счет адсорбции, ионного обмена и других взаимодействий. В качестве коллекторов используют гидроксиды, сульфиды, фосфаты, карбонаты, образующие малорастворимые осадки с большой активной поверхностью. Применяют также органические коллекторы вместе с комплексообразующим реагентом, например, 8-оксихинолином. Осаждение микрокомпонентов органическими реагентами приводит к эффективному концентрированию. Подбирая условия осаждения, например рН раствора, можно разделять ионы металлов. Например, в слабокислой среде осаждаются соли Al, Fe, Cu, Co, Ni, но не осаждаются соли Mg, Ca, Ba, Mn, Pb. В смеси винной кислоты с NaOH при рН >10 осаждаются соли Cu, Zn и не осаждаются соли Al, Cr, Pb, Fe.
Недостаток соосаждения - длительность процесса.
4.3.5. МЕМБРАННОЕ РАЗДЕЛЕНИЕ
Мембрана - тонкая плёнка, избирательно проницаемая для отдельных веществ. Мембраны делают из полимеров, иногда из металлов, стекла. Для того, чтобы отверстия в мембране были нужного размера, применяются специальные методы - облучение р/а частицами, химические реакции с поверхностными функциональными группами и др. Перенос вещества через мембраны происходит за счёт:
а) разности концентраций с обеих сторон (диализ),
б) разности электрических потенциалов (электродиализ),
в) разности давлений (микрофильтрация, ультрафильтрация, обратный осмос).
Применение мембан позволяет осуществить экологичные, селективные, процессы разделения и очистки с простой аппаратурой и низкими энергозатратами. Используются для широкого круга объектов:
-
опреснение морской воды (10 млн м3 в сутки),
-
очистка сточных вод от тяжёлых металлов (в том числе Cd, Cr, Pb, Hg, Ni, р/а изотопов),
-
обеззараживание воды (очистка от бактерий и вирусов),
-
пролонгирование действия лекарств и удобрений (капсулы),
-
разделение газов,
-
аппарат "искусственная почка" и др.
Клетки живых организмов окружены белково-фосфолипидной мембраной, через которую проходят газы и вещества. Процессы дыхания, питания, передачи нервных импульсов, выделения отходов связаны с избирательным переносом веществ через мембрану.
5. ЛЕКЦИЯ 5. Хроматография
Хроматография - физико-химический метод и разделения и анализа жидких и газовых смесей, основанный на распределении их компонентов между двумя фазами - неподвижной и подвижной (элюент), протекающей через неподвижную. Метод впервые предложен в 1903 русским учёным М. Цветом, который пропускал экстракт из листьев через колонку, заполненную CaCO3 и получил отдельные окрашенные зоны. Сейчас это наиболее мощный метод анализа, за него 10 раз присуждались нобелевские премии. В частности, это незаменимый метод биохимического анализа, обнаружения наркотиков или допинга в организме, разделения белков, криминалистической экспертизы (идентификация человека по его запаху в помещении, обнаружения спрятанных ВВ), мониторинга окружающей среды (обнаружения органическихъ загрязнений в воздухе городов, сильнейшего яда - диоксина). Достоинства хроматографического метода - универсальность, экспрессность, высокая чувствительность, точность и разделительная способность. Он позволяет разделять вещества, очень близкие по своим химическим свойствам, такие как лантаноиды, актиноиды, изотопы, органические изомеры.
Хроматография использует сорбцию, но в отличие от вышеизложенных методов сорбция происходит в потоке, то-есть компоненты исследуемой смеси распределяются между двумя фазами, одна из которых движется относительно другой. Неподвижной, или стационарной фазой служит твердое вещество (сорбент) либо пленка жидкости на твердом веществе. Её помещают в стеклянную или металлическую трубку - хроматографическую колонку, либо наносят на поверхность пластинки. Жидкая или газообразная подвижная фаза с исследуемой смесью протекает через неподвижную, часть молекул каждого из компонентов успевает сорбироваться на поверхности неподвижной фазы. Устанавливается динамическое равновесие между количеством анализируемого компонента в подвижной и неподвижной фазах. Оставшаяся часть смеси уносится потоком подвижной фазы и сорбируется уже на новом участке сорбента. Задержанные неподвижной фазой части компонентов смеси не участвуют в движении потока подвижной фазы до тех пор, пока не десорбируются и не попадут снова в поток подвижной фазы. Многократно повторяются акты сорбции и десорбции молекул. Молекулы разных компонентов смеси переносятся вдоль слоя неподвижного сорбента с разными скоростями в зависимости от времени "прилипания" к сорбенту, что при достаточной длине слоя сорбента приводит к полному разделению смеси. Смеси разделяется на фракции, которые выходят из колонки по отдельности. В конце колонки первыми начнут выходить с потоком подвижной фазы наиболее слабо сорбируемые молекулы, последними - наиболее сильно сорбируемые. Сравнение со стипль-чезом.
Для "торможения" молекул используют такие свойства, как адсорбируемость, способность к ионному обмену, растворимость, окислительно-восстановительный потенциал, стойкость комплексных соединений и др
Рассмотрим классификацию хроматографических методов.
Классификация по агрегатному состоянию фаз
В соответствии с агрегатным состоянием подвижной фазы - элюента различают газовую и жидкостную хроматографию. В качестве газа-носителя используют гелий, азот, аргон и др., а в качестве жидкого элюента - легколетучие растворители (углеводороды, эфиры, спирты).
Подвижная фаза (элюент) | неподвижная фаза | |
жидкая на носителе | твёрдая | |
газовая | газо-жидкостная | газо-адсорбционная |
жидкая | жидкостно-жидкостной | жидкостно-адсорбционная или твёрдо-жидкостная |
Для газо-жидкостной хроматографии сорбент готовят нанесением жидкости в виде плёнки (высококипящие углеводороды, сложные эфиры, силоксаны и др.) толщиной несколько мкм на твёрдый носитель с большой удельной поверхностью (0,5-5 м2/г и более.).
Классификация на основе природы взаимодействия.
1) Адсорбционная хроматография основана на различной сорбируемости разделяемых веществ твёрдым адсорбентом.
2) Распределительная хроматография основана на разной растворимости компонентов смеси (г или ж) в неподвижной фазе (высококипящая жидкость, нанесённая на твёрдый макропористый носитель) и элюенте (аналог жидкостной экстракции).
3) Ионообменная хроматография основана на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и компонентами разделяемой смеси;