Главная » Просмотр файлов » Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2003)

Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2003) (1092038), страница 115

Файл №1092038 Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2003) (Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2003)) 115 страницаВасин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2003) (1092038) страница 1152018-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 115)

9.29. Схема каскадного кодирования 588 Легко показать, что кодовое расстояние этого кода равно 4. Код исправляет все однократные ошибки. Их координаты определяются по номерам строк и столбцов, в которых не выполняется проверка на четность. Одновременно код обнаруживает все двухкратные ошибки. Итеративные коды характеризуются большой длиной, большим кодовым расстоянием и сравнительно простой процедурой декодирования. Недостатком их является малая скорость /с/и при заданной исправляющей способности. Каскадные коды получаются комбинированием двух или более кодов и в некоторой степени похожи на итеративные. Кодирование осуществляется следующим образом 1133]. Множество /с,/г, информационных символов (в дальнейшем предполагают, что они двоичные) разбивается на /ст подблоков по /с~ символов.

Каждый подблок из /с~ символов рассматривается как символ из алфавита объемом 2ч. Затем /гт подблоков кодируются кодовыми комбинациями внешнего кода (рис. 9.29), составленными из пт подблоков по /г1 двоичных символов, Наконец, каждый из пт подблоков кодируется кодовыми комбинациями внутреннего кода (пь 1,). Полученное множество пт кодовых слов внутреннего (и„ /с,)-кода является кодовым словом каскадного (п,пъ /с~/ст)-кода. Обычно в качестве внешнего используют код Рида — Соломона с основанием 2 ', обеспечивающий максимальное кодовое расстояние при заданных л, и /г„пт < 2ч, а в качестве внутреннего — двоичный (пь /с,)-код.

Декодирование осуществляется следующим образом. Сначала декодируется внутренний код, При этом получается пт подблоков, содержащих по /е~ символов, которые декодируются внешним кодом. В результате на выхоЛе внешнего декодера появляются /с, подблоков по /г, символов. Декодирование двумя отдельными декодерами позволяет существенно снизить сложность по сравнению с той, которая потребуется для получения 9.5. Помехоустойчивое кодирование и декодирование той же вероятности ошибки при одном уровне кодирования. Каскадные коды, как и итеративные, имеют большую длину и большое кодовое расстояние.

Во многих случаях они являются наилучшими среди блочных кодов. В частности, для двоичного симметричного канала при любой скорости передачи, не превосходящей пропускной способности канала, существует каскадный код, при котором вероятность ошибки может быть сколь угодно мала. 9.5.3. Непрерывные (сверточные) коды Сверточный код — это линейный рекуррентный код. В общем случае он образуется следующим образом. В каждый 2'-й тактовый момент времени на вход кодирующего устройства поступает «в символов сообщения ала,....ах Выходные символы ЬлЬ,....Ь, фоРмиРУютсЯ с помощью Рекуррентного соотношения из К символов сообщения, поступивших в данный и предшествующие тактовые моменты времени: к~ко-1 Ь, = ~(В~Юс „ар „), т=1,2,...,ло, =о где с — коэффициенты, принимающие значения 0 или 1.

Символы сообщения, из которых формируются выходные символы, хранятся в памяти кодирующего устройства. Величина К называется длиной кодового ограничения. Она показывает, на какое максимальное число выходных символов влияет данный информационный символ, и играет ту же роль, что и длина блочного кода. Сверточный код имеет избыточность у = 1 — /со/но и обозначается ко/по. 'Типичные параметры сверточного кода: /со, но = 1, 2, "., 8; /2о/но = = 1/4, ..., 7/8; К = 3, ..., 10 11331. Кодирующее устройство сверточного кода может быть реализовано с помощью сдвигающего реги- ы2 стра и сумматоров по модулю 2.

Для схемы, показанной на ьа рИС. 9.30, На КаждЫй СИМВОЛ Вход Г~ Гх Гх сообщения вырабатываются о, /Нх ВЫХОД два символа, которые последовательно во времени через ы2 ы2 коммутатор подаются в канал. Выходные символы являются линейными функция- Рис. 9ЗВ. Структурная схема кодера сверточми поступающего информа- ного кода(/оо/но=!/2,К/ 3) 589 9. Радиотехнические системы передачи информации ционного символа и комбинации, записанной в первых двух разрядах регистра (логического состояния регистра).

Связь между ячейками сдвигающего регистра и сумматорами по модулю 2 удобно описывать порождающими много- членами 9;(х), у = 1, 2, ..., по. Для рассматриваемого случая 9~(х) = хз Ю 1 (описывает связи верхнего сумматора) и 9з(х) =хз ео х Ю 1 (описывает связи нижнего сумматора). Наличие члена х', 1 = О, 1, 2, ..., в порождающем много- члене означает, что (1 + 1)-й разряд регистра сдвига соединен с сумматором. Счет разрядов регистра ведется слева направо. Сверточный код получается разделимым, если в каждый тактовый момент ко выходных символов совпадают с символами сообщения.

На практике обычно используются несистематические сверточные коды. Различают прозрачные и непрозрачные сверточные коды, Первые характеризуются свойством инвариантности по отношению к операции инвертирования кода, которое заключается в следующем: если значения символов на входе кодера поменять на противоположные, то выходная последовательность символов также инвертируется. Соответственно, декодированная последовательность символов будет иметь такую же неопределенность в знаке, что и принятая последовательность символов, а следовательно, неопределенность знака последовательности можно устранить после декодирования сверточного код» (рис.

9.31). Указанное свойство прозрачных кодов особенно важно для СПИ, использующих противополоясные фазоманипулированные сигналы, которым свойственно явление обратной работы. Для непрозрачного кода неопределенность знака последовательности символов приходится устранять до сверточного декодирования, что приводит к увеличению вероятности ошибок. Нетрудно показать, что сверточный код будет прозрачным, если каждый его порождающий многочлен содержит нечетное число членов. Помимо рассмотренного способа задания сверточного кода, возможны и другие.

В частности, выходные символы можно рассматривать как свертку импульсной характеристики кодера с информационной последовательностью (отсюда происходит название кода). декодер Разнесений кодер Рис. 9.31. Схема СПИ при использовании прозрачных сверточных колов 590 9.5. Помекоустойчивое кодирование и декодирование Начальное состояние ~ОО] [О2~ Я Я О ! 2 1l Такты Рис. 9.32. Решетчатая диаграмма для кода 1/2 с К = 3 Для пояснения процессов кодирования и декодирования часто используют решетчатую диаграмму, представляющую собой одно из возможных изображений кодового дерева. Такая диаграмма для кодера на рис.

9.32 состоит из узлов и ветвей (ребер). Число ветвей, исходящих из узла, равно основанию кода. Число узлов равно 2к '. Единичному символу сообщения приписываются штриховые линии, а нулевому — сплошные. Выходные символы записываются над ветвями. Надписи около узлов характеризуют логическое состояние кодирующего устройства. Каждой информационной последовательности символов соответствует определенный путь (определенная траектория) на диаграмме. Кодовая последовательность формируется путем считывания комбинаций над ветвями при прослеживании данного пути.

Соответственно, процесс кодирования заключается в выборе одного из путей диаграммы. Корректирующая способность сверточного кода зависит от так называемого свободного расстояния И„, которое, по существу, содержит ту же информацию о коде, что и кодовое расстояние для блочных кодов. Оно определяется как минимальный вес (минимальное число единиц) пути на решетчатой диаграмме, начинающегося и заканчивающегося в нулевом узле. Например, для кода ка/нс = 1/2, К = 3 имеем Н„= 5.

В табл. 9.1 приведены порождающие многочлены оптимальных сверточных кодов с относительной скоростью передачи 1/2 и кодовым ограничением длины 3...8, а также значения свободных расстояний этих кодов. 591 9. Радиотехнические системы передачи информации Таблица 9.1 Порождающие многочлены оптимальных сверточиых кодов Сверточные коды можно декодировать различными методами. Различают декодирование с вычислением и без вычисления проверочной последовательности. Декодирование с вычислением проверочной последовательности применяется только для систематических кодов.

Оно ничем не отличается от соответствующего метода декодирования блочных кодов. На приемной стороне из принятых информационных символов формируют проверочные символы по тому закону, что и на передающей стороне, которые затем сравнивают с принимаемыми проверочными символами. В результате сравнения образуется проверочная последовательность, которая при отсутствии ошибок состоит из одних нулей.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее