Маркеры, характеризующие гликемический статус и развитие нейрональных нарушений у пациентов с сахарным диабетом 1-го типа (1091720), страница 24
Текст из файла (страница 24)
88–97160. Barzegar A, Moosavi-Movahedi AA, Sattarahmady N, et al. Spectroscopic studies of theeffects of glycation of human serum albumin on L-trp binding // Prot Pep Lett. – 2007. - V. 14. - P.13–18161. Okabe N., Hashizume N. Drug binding properties of glycosylated human serumalbumin as measured by fluorescence and circular dichroism // Biol Pharm Bull. – 1994. - V. 17. - P.16–21162. Howard M.J., Smales C.M. NMR analysis of synthetic human serum albumin α-helix28identifies structural distortion upon Amadori modification // J Biol Chem. – 2005. - V.280(225) - P.82– 89163.
Taneda S., Monnier V.M. ELISA of pentosidine, an advanced glycation endproduct, in112biological specimens // Clin Chem. - 1994. - V. 40. - P. 1766–1773164. Lee C., Yim M.B., Chock P.B., Yim Y.S., Kang S.O. Oxidation-reduction properties ofmethylglyoxal-modified protein in relation to free radical generation // J Biol Chem. – 1998. - V. 273.
P. 25272–25278165. Iberg N., Fluckiger R. Nonenzymatic glycosylation of albumin in vivo // J Biol Chem. –1986. – V. 261. P. 13542-13545166. Schleicher E., Wieland O.H. Specific quantitation by HPLC of protein (lysine) boundglucose in human serum albumin and other glycosylated proteins // J Clin Chem Clin Biochem. –1981. – V. 19. - P.
81–87167. Ahmed N., Argirov O.K. Minhas H.S., Cordeiro C.A.A., Thornalley P.J. Assay ofadvanced glycation end products (AGEs ): survey in gAGEs by chromatographic assay withderivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and applica-tion to Nεcarboxymethyl–lysine- and Nε-(1-carboxyethyl)lysine-modified albu-min // Biochem J. – 2002. – V.364.
- P. 1–14168.BarnabyO.S., CernyR.L., ClarkeW., HageD.S.Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling andMALDI-TOF MS // Clin Chim Acta. – 2011. - V. 412(17-18). - P. 1606-1615169.WaC., CernyR.L., ClarkeW.A., HageD.S.Characterization of glycation adducts on human serum albumin by matrixassisted laser desorption/ionization time-of-flight mass spectrometry // Clin Chim Acta.
– 2007. – V.385(1-2). - P. 48-60170. Frolov A., Hoffman R. Analysis of Amadori peptides enriched by boronic acid affinitychromatography // Ann. N. Y. Acad. Sci. – 2008. - V. 1126. P. 253 – 256.171. Garlick R.L., Mazer J.S. The principal site of nonenzymatic glycosylation of humanserum albumin in vivo // J Biol Chem. 1983. – V.258(10). P. 6142-6146172. Baraka-Vidot J., Guerin-Dubourg A., Bourdon E., Rondeau P.
Impaired drug-bindingcapacities of in vitro and in vivo glycated albumin // Biochimie. – 2012. - V. 94(9). - P. 1960-1967173. Bohney J.P., Feldhoff R.C. Effects of nonenzymatic glycosylation and fatty acids ontryptophan binding to human serum albumin // Biochem Pharmacol. – 1992. – V. 43(8). - P. 18291834174. Rondeau P., Bourdon E. The glycation of albumin: structural and functional impacts //Biochimie. – 2011. – V. 93(4). – P. 645-58175.
Joseph K.S., Anguizola J., Hage D.S. Binding of tolbutamide to glycated human serumalbumin // J. Pharm. Biomed Anal. – 2011. –V. 54. P. 426 –432176. Matsuda R., Anguizola J., Joseph K.S., Hage D.S. High-performance affinity113chromatography and the analysis of drug interactions with modified proteins: binding of gliclazidewith glycated human serum albumin //Anal Bioanal Chem 2011. – V. 401. - P. 2811–2819177. Okabe N., Hashizume N. Drug binding properties of glycosylated human serum albuminas measured by fluorescence and circular dichroism // Biol Pharm Bull. – 1994. - V.17(1). - P.
16-21.178. Kawakami A, Kubota K, Yamada N, et. al. Identification and characterization ofoxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidantfunctions // FEBS J. – 2006. – V. 273(14). P. 3346-3357179. Thornalley P.J. Quantitative screening of advanced glycation endproducts in cellular andextracellular proteins by tandem mass spectrometry // Biochem J. - 2003. – V. 375. – P. 581–592180. Frolov A., Hoffmann R. Identification and relative quantification of specificglycationsites in human serum albumin // Anal Bioanal Chem. - 2010. - V. 397. – P. 2349–2356181.
Kisugi R., Kouzuma T., Yamamoto T., et al. Structural and glycation site changes ofalbumin in diabetic patient with very high glycated albumin // Clin Chim Acta. - 2007. – V. 382. – P.59–64182. Priego-Capote F., Scherl A., Muller M., Waridel P., Lisacek F., Sanchez J.C. Glycationisotopic labelingwith 13 C-reducing sugars for quantitative analysis of glycated proteins in humanplasma // Mol Cell Proteomics.
– 2010. – V. 9. – P. 579–597183. Barnaby O.S., Wa C., Cerny R.L., Clarke W., Hage D.S. Quantitative analysis ofglycation sites on human serum labeling using 16O/18O labeling and matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry // Clin Chim Acta. - 2010. – V.
411. - P. 102–110184. Frost L., Chaudhry M., Bell T., Cohenford M. In vitro galactation of human serumalbumin: analysis of the protein's galactation sites by mass spectrometry // Anal Biochem. – 2011. - V.410. P. 248–256185.ZengJ.,DaviesM.J.EvidencefortheformationofadductsandS-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids,peptides, and proteins // Chem.
Res. Toxicol. – 2005. - V. 18. – P. 1232-1241186. Mostafa A.A., Randell E.W., Vasdev S.C., Gill V.D., Han Y., Gadag V., Raouf A.A., ElSaid H. Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethylcysteine, are elevated and related to nephropathy in patients with diabetes // Mol. Cell Biochem.
–2007. – V. 302. – P. 35-42187. Aitken A., Learmonth M. Quantification and location of disulfide bonds in proteins //Methods Mol Biol.- 1997. - V. – 64. P. - 317-328188. Levine R.L., Garland D., Oliver C.N., et al. Determination of carbonyl content in114oxidatively modified proteins.
Methods Enzymol // 1990. – V. 186. P. 464-478189. Досон Р., Эллиот Д., Эллиот У., Джонс К. Справочник биохимика // Мир. - 1991. 544 с.190. Debro J.R., Tarver H., Korner A. J. The determination of serum albumin and globulin bya new method // Lab Clin Med. – 1957. – V. 50(5). P. 728-732191. Domingues M.R. et al. Do charge-remote fragmentations occur under matrix-assistedlaser desorption ionization post-source decompositions and matrix-assisted laser desorption ionizationcollisionally activated decompositions? // J.
Am. Soc. Mass Spectrom. - 1999. - V. 10(3). - P. 217–223192. Nikolaev E.N. et al. Implementation of low-energy surface-induced dissociation (eVSID) and high-energy collision-induced dissociation (keV CID) in a linear sector-TOF hybrid tandemmass spectrometer // Int.
J. Mass Spectrom. - 2001. - V. 212(1). - P. 535–551193. Vauhkonen I., Niskanen L., Knip M., et al. Subtle hyperproinsulinaemia characterisesthe defective insulin secretory capacity in offspring of glutamic acid decarboxylase antibody-positivepatients with latent autoimmune diabetes mellitus in adults // Eur. J. Endocrinol. - 2005. - V.153. - P.265–273194. Galloway J.A., Hooper S.A., Spradlin C.T., Howey D.C., Frank B.H., BowsherRR., Anderson J.H.
Biosynthetic human proinsulin. Review of chemistry, in vitro and in vivo receptorbinding, animal and human pharmacology studies, and clinical trial experience // Diabetes Care. –1992. – V. - 15(5). P. - 666-692195. Bain SC, Gill GV, Dyer PH, et al. Characteristics of Type 1 diabetes of over 50 yearsduration (the Golden Years Cohort) // Diabet Med. – 2003. - V. 20. - P.
808–811196. Hartling S.G., Knip M., Roder M.E., et al. Longitudinal study of fasting proinsulin in148 siblings of patients with insulin-dependent diabetes mellitus. Study Group on Childhood Diabetesin Finland // Europ. J. Endocrin. – 1997. - V. – 137. - P. 490–494197. Lindgren F.A., Hartling S.G., Dahlquist G.G. et al. Glucose-induced insulin response isreduced and proinsulin response increased in healthy siblings of type 1 diabetic patients // DiabeticMedicine. – 1991.
- V. 8. - P. 638–643198. Mortensen H.B., Houqaard P., Swift P. et al. New definition for the partial remissionperiod in children and adolescents with type 1 diabetes // Diabetes Care. – 2009. - V.32 (8). - P. 13841390199. Roder M.E., Knip M., Hartling S.G. et al. Disproportionately elevated proinsulin levelsprecede the onset of insulin-dependent diabetes mellitus in siblings with low first phase insulinresponses.
The Childhood Diabetes in Finland Study Group // J. Clin. Endocrin.Metab. – 1994. - V. 79.115- P. 1570–1575200. Dib S.A. Heterogeneity of type 1 diabetes mellitus // Arq. Bras. Endocrinol.Metabol. –2008. - V. - 52(2). - P. 205-218201. Guerin-Dubourg A., Catan A. Bourdon E., Rondeau P. Structural modifications of humanalbumin in diabetes // Diabetes Metab.
– 2012. – V. - 38(2). – P. 171-178202. ISPAD Consensus Guidelines for the Management of Type 1 Diabetes Mellitus inChildren and Adolescents // International society for pediatric and adolescent diabetes. – 2000. 128203. Бадалян Л.О., Скворцов И.А. Клиническая электромиография // М: Медицина. 1986. – 368 с.204. Гехт Б.М., Касаткина Л.Ф., Самойлов М.И. и др. Электромиография в диагностикенервно-мышечных заболеваний // Таганрог: ТРТУ. – 1997. – 370 с.205. El-Salem K., Ammani F., Khader Y., Dhaimat O. Elevated glycosylated hemoglobin isassociated with subclinical neuropathy in neurologically asymptomatic diabetic patients: a prospectivestudy // Clin Neuriphysiol.