Диссертация (1091554), страница 17
Текст из файла (страница 17)
Vol. 22, № 12. P.125706.18.Mak K.F., He K., Shan J., et al. Control of valley polarization in monolayerMoS2 by optical helicity // Nat. Nanotechnol. 2012. Vol. 7, № 8. P. 494–498.19.Zeng H., Cui X., Novoselov K.S., et al. An optical spectroscopic study on two132dimensional group-VI transition metal dichalcogenides // Chem.
Soc. Rev. TheRoyal Society of Chemistry, 2015. Vol. 44, № 9. P. 2629–2642.20.Zhao W., Ghorannevis Z., Chu L., et al. Evolution of electronic structure inatomically thin sheets of ws 2 and wse2 // ACS Nano. 2013. Vol. 7, № 1. P.791–797.21.Lee H.S., Min S.W., Chang Y.G., et al. MoS 2 nanosheet phototransistors withthickness-modulated optical energy gap // Nano Lett.
2012. Vol. 12, № 7. P.3695–3700.22.Eda G., Yamaguchi H., Voiry D., et al. Photoluminescence from chemicallyexfoliated MoS 2 // Nano Lett. 2011. Vol. 11, № 12. P. 5111–5116.23.Wang H., Yu L., Lee Y.-H., et al. Integrated Circuits Based on BilayerMoS2Transistors // Nano Lett. 2012. Vol. 12, № 9. P. 4674–4680.24.Kang J., Tongay S., Zhou J., et al. Band offsets and heterostructures of twodimensional semiconductors // Appl. Phys. Lett.
AIP Publishing, 2013. Vol.102, № 1. P. 12111.25.Radisavljevic B., Kis A. Mobility engineering and a metal–insulator transitionin monolayer MoS2 // Nat. Mater. 2013. Vol. 12, № 9. P. 815–820.26.Radisavljevic B., Kis A. Mobility engineering and a metal-insulator transitionin monolayer MoS₂. // Nat. Mater. Nature Research, 2013.
Vol. 12, № 9. P.815–820.27.Perea-López N., Elías A.L., Berkdemir A., et al. Photosensor Device Based onFew-Layered WS 2 Films // Adv. Funct. Mater. WILEY‐VCH Verlag, 2013.Vol. 23, № 44. P. 5511–5517.28.Yin Z., Li H., Li H., et al. Single-layer MoS 2 phototransistors // ACS Nano.American Chemical Society, 2012. Vol. 6, № 1. P. 74–80.29.Bernardi M., Palummo M., Grossman J.C. Extraordinary sunlight absorption133and one nanometer thick photovoltaics using two-dimensional monolayermaterials // Nano Lett. American Chemical Society, 2013.
Vol. 13, № 8. P.3664–3670.30.Polman A., Atwater H. a. Photonic design principles for ultrahigh-efficiencyphotovoltaics // Nat. Mater. Nature Publishing Group, 2012. Vol. 11, № 3. P.174–177.31.Tsuboi Y., Wang F., Kozawa D., et al. Enhanced photovoltaic performancesof graphene/Si solar cells by insertion of a MoS2 thin film // Nanoscale. 2015.Vol.
7, № 34. P. 14476–14482.32.Jiao K., Duan C., Wu X., et al. The role of MoS 2 as an interfacial layer ingraphene/silicon solar cells // Phys. Chem. Chem. Phys. The Royal Society ofChemistry, 2015. Vol. 17, № 12. P. 8182–8186.33.Late D.J., Huang Y.K., Liu B., et al. Sensing behavior of atomically thinlayered MoS2 transistors // ACS Nano.
American Chemical Society, 2013.Vol. 7, № 6. P. 4879–4891.34.He Q., Zeng Z., Yin Z., et al. Fabrication of flexible MoS2 thin-film transistorarrays for practical gas-sensing applications // Small. WILEY‐VCH Verlag,2012. Vol. 8, № 19. P. 2994–2999.35.Perkins F.K., Friedman A.L., Cobas E., et al. Chemical vapor sensing withmonolayer MoS2 // Nano Lett.
American Chemical Society, 2013. Vol. 13, №2. P. 668–673.36.Zhang Q., Yu K., Zhao B., et al. Synthesis of a MoS2@MWNT nanostructurewith enhanced field emission and electrochemical properties // RSC Adv. TheRoyal Society of Chemistry, 2013. Vol. 3, № 27. P.
10994.37.Liu J., Zeng Z., Cao X., et al. Preparation of MoS2-polyvinylpyrrolidonenanocomposites for flexible nonvolatile rewritable memory devices withreduced graphene oxide electrodes // Small. WILEY‐VCH Verlag, 2012. Vol.1348, № 22. P.
3517–3522.38.Yin Z., Zeng Z., Liu J., et al. Memory devices using a mixture of MoS2 andgraphene oxide as the active layer // Small. WILEY‐VCH Verlag, 2013. Vol.9, № 5. P. 727–731.39.Sundaram R.S., Engel M., Lombardo A., et al. Electroluminescence in SingleLayer MoS 2 // Nano Lett. American Chemical Society, 2013. Vol. 13, № 4. P.1416–1421.40.Zhang Y.J., Ye J.T., Yomogida Y., et al. Formation of a stable p-n junction ina liquid-gated MoS2 ambipolar transistor // Nano Lett. 2013.
Vol. 13, № 7. P.3023–3028.41.Duerloo K.A.N., Ong M.T., Reed E.J. Intrinsic piezoelectricity in twodimensional materials // J. Phys. Chem. Lett. American Chemical Society,2012. Vol. 3, № 19. P. 2871–2876.42.Wu W., Wang L., Li Y., et al. Piezoelectricity of single-atomic-layer MoS2for energy conversion and piezotronics // Nature. 2014. Vol. 514, № 7523. P.470–474.43.Janisch C., Mehta N., Ma D., et al. Ultrashort optical pulse characterizationusing WS₂ monolayers.
// Opt. Lett. Optical Society of America, 2014. Vol.39, № 2. P. 383–385.44.Winchester A., Ghosh S., Feng S., et al. Electrochemical characterization ofliquid phase exfoliated two-dimensional layers of molybdenum disulfide //ACS Appl. Mater. Interfaces. American Chemical Society, 2014. Vol. 6, № 3.P. 2125–2130.45.Yu W.J., Li Z., Zhou H., et al. Vertically stacked multi-heterostructures oflayered materials for logic transistors and complementary inverters // Nat.Mater. 2012.
Vol. 12, № 3. P. 246–252.46.Lopez-Sanchez O., Lembke D., Kayci M., et al. Ultrasensitive photodetectors135based on monolayer MoS2 // Nat. Nanotechnol. 2013. Vol. 8, № 7. P. 497–501.47.Fontana M., Deppe T., Boyd A.K., et al. Electron-hole transport andphotovoltaic effect in gated MoS2 Schottky junctions.
// Sci. Rep. 2013. Vol.3. P. 1634.48.Nicolosi V., Chhowalla M., Kanatzidis M.G., et al. Liquid Exfoliation ofLayered Materials // Science (80-. ). 2013. Vol. 340, № 6139. P. 1226419.49.Coleman J.N., Lotya M., O’Neill A., et al. Two-Dimensional NanosheetsProduced by Liquid Exfoliation of Layered Materials // Science (80-. ). 2011.Vol. 331, № 6017. P. 568–571.50.Coleman J.N. Liquid Exfoliation of Defect-Free Graphene // Acc.
Chem. Res.American Chemical Society, 2013. Vol. 46, № 1. P. 14–22.51.Dines M.B. Lithium intercalation via n-Butyllithium of the layered transitionmetal dichalcogenides // Mater. Res. Bull. Pergamon, 1975. Vol. 10, № 4. P.287–291.52.Joensen P., Frindt R.F., Morrison S.R.
Single-layer MoS2 // Mater. Res. Bull.Pergamon, 1986. Vol. 21, № 4. P. 457–461.53.Xu C., Peng S., Tan C., et al. Ultrathin S-doped MoSe 2 nanosheets forefficient hydrogen evolution // J. Mater. Chem. A. The Royal Society ofChemistry, 2014. Vol. 2, № 16. P.
5597–5601.54.Ma C.-B., Qi X., Chen B., et al. MoS2 nanoflower-decorated reduced grapheneoxide paper for high-performance hydrogen evolution reaction // Nanoscale.The Royal Society of Chemistry, 2014. Vol. 6, № 11. P. 5624.55.Huang X., Zeng Z., Bao S., et al. Solution-phase epitaxial growth of noblemetal nanostructures on dispersible single-layer molybdenum disulfidenanosheets // Nat. Commun. Nature Research, 2013.
Vol. 4. P. 1444.13656.Zhang Y., Zheng B., Zhu C., et al. Single-layer transition metal dichalcogenidenanosheet-based nanosensors for rapid, sensitive, and multiplexed detection ofDNA // Adv. Mater. 2015. Vol. 27, № 5. P. 935–939.57.Zhu C., Zeng Z., Li H., et al. Single-layer MoS2-based nanoprobes forhomogeneous detection of biomolecules // J. Am. Chem. Soc. AmericanChemical Society, 2013. Vol. 135, № 16. P. 5998–6001.58.Wu S., Zeng Z., He Q., et al. Electrochemically reduced single-layer MoS2nanosheets: Characterization, properties, and sensing applications // Small.WILEY‐VCH Verlag, 2012.
Vol. 8, № 14. P. 2264–2270.59.Yin Z., Chen B., Bosman M., et al. Au Nanoparticle-Modified MoS 2Nanosheet-Based Photoelectrochemical Cells for Water Splitting // Small.2014. Vol. 10, № 17. P. 3537–3543.60.King L.A., Zhao W., Chhowalla M., et al. Photoelectrochemical properties ofchemically exfoliated MoS2 // J. Mater. Chem. A. The Royal Society ofChemistry, 2013. Vol.
1, № 31. P. 8935.61.Zhu H.W. Direct Synthesis of Long Single-Walled Carbon Nanotube Strands// Science (80-. ). 2002. Vol. 296, № 5569. P. 884–886.62.Lv R., Cui T., Jun M.-S., et al. Open-Ended, N-Doped Carbon NanotubeGraphene Hybrid Nanostructures as High-Performance Catalyst Support //Adv. Funct. Mater. WILEY‐VCH Verlag, 2011. Vol. 21, № 5.