Диссертация (1091554), страница 19
Текст из файла (страница 19)
IEEE, 2004. P. 465–467.109. Ressier L., Le Nader V. Electrostatic nanopatterning of PMMA by AFMcharge writing for directed nano-assembly // Nanotechnology. 2008. Vol. 19,№ 13. P. 135301-.110. D’Ambra D.M., Marzik J.V., Kershaw R., et al. Preparation and electronic142properties of MoS2 and WS2 single crystals grown in the presence of cobalt //J. Solid State Chem. 1985. Vol. 57, № 3. P. 351–356.111. Ubaldini A., Jacimovic J., Ubrig N., et al. Chloride-Driven Chemical VaporTransport Method for Crystal Growth of Transition Metal Dichalcogenides //Cryst.
Growth Des. 2013. Vol. 13, № 10. P. 4453–4459.112. Mishina E., Sherstyuk N., Lavrov S., et al. Observation of two polytypes ofMoS2 ultrathin layers studied by second harmonic generation microscopy andphotoluminescence // Appl. Phys. Lett. 2015. Vol. 106, № 13. P. 131901.113. Мишина Е.Д., Шерстюк Н.Э., Шестакова А.П., et al. Краевые эффекты вгенерации второй гармоники в наноразмерных слоях дихалькогенидовпереходных металлов // Физика и техника полупроводников. 2015. Vol.49, № 6.
P. 810–816.114. Kulyuk L., Dumcehnko D., Bucher E., et al. Excitonic luminescence of theBr2-intercalated layered semiconductors 2H-WS2 // Phys. Rev. B - Condens.Matter Mater. Phys. 2005. Vol. 72, № 7. P. 1–7.115. Chamings J., Ahmed S., Sweeney S.J., et al. Physical properties and efficiencyof GaNP light emitting diodes // Appl.
Phys. Lett. 2008. Vol. 92, № 2.116. Komsa H.P., Kotakoski J., Kurasch S., et al. Two-dimensional transition metaldichalcogenides under electron irradiation: Defect production and doping //Phys. Rev. Lett. 2012. Vol. 109, № 3. P. 1–5.117. Tongay S., Suh J., Ataca C., et al. Defects activated photoluminescence in twodimensional semiconductors: interplay between bound, charged, and freeexcitons. // Sci. Rep. 2013. Vol. 3. P.
2657.118. Anghel S., Chumakov Y., Kravtsov V. Identification of 2H and 3R polytypesof MoS2 layered crystals using photoluminescence spectroscopy // Condens.Matter. 2014. P. 7.119. Huo N., Yang S., Wei Z., et al. Photoresponsive and gas sensing field-effect143transistors based on multilayer WS₂ nanoflakes. // Sci. Rep. 2014. Vol. 4.
P.5209.120. Suzuki R., Sakano M., Zhang Y.J., et al. Valley-dependent spin polarization inbulk MoS2 with broken inversion symmetry // Nat. Nanotechnol. NaturePublishing Group, 2014. Vol. 9, № 8. P. 611–617.121. Wu S., Ross J.S., Liu G.-B., et al. Electrical tuning of valley magnetic momentthrough symmetry control in bilayer MoS2 // Nat.
Phys. 2013. Vol. 9, № 3. P.149–153.122. van der Zande A.M., Huang P.Y., Chenet D. a, et al. Grains and grainboundaries in highly crystalline monolayer molybdenum disulphide. // Nat.Mater. Nature Publishing Group, 2013. Vol. 12, № 6. P. 554–561.123. Yin X., Ye Z., Chenet D.A., et al. Edge nonlinear optics on a MoS₂ atomicmonolayer. // Science. 2014.
Vol. 344, № 6183. P. 488–490.124. Li Y., Tongay S., Yue Q., et al. Metal to semiconductor transition in metallictransition metal dichalcogenides // J. Appl. Phys. 2013. Vol. 114, № 17.125. Hsu W.-T.T., Zhao Z.-A.A., Li L.-J.J., et al. Second harmonic generation fromartificially stacked transition metal dichalcogenide twisted bilayers // ACSNano. 2014. Vol.
8, № 3. P. 2951–2958.126. Colev A., Gherman C., Mirovitskii V., et al. Kinetics of the excitonic radiativerecombination in WS2:Br2 and MoS2:Cl2 layered crystals // J. Lumin. 2009.Vol. 129, № 12. P. 1945–1947.127. Aktsipetrov O.A., Fedyanin A.A., Mishina E.D., et al. dc-electric-fieldinduced second-harmonic generation in Si(111)-SiO2-Cr metal-oxidesemiconductor structures // Phys. Rev. 1996. Vol. 54, № 3. P.
1825–1832.128. Lei M., Price J., Downer M.C. Hot carrier injection from nanometer-thicksilicon-on-insulator films measured by optical second-harmonic generation //Appl. Phys. Lett. AIP Publishing, 2010. Vol. 96, № 24. P. 241105.144129. Germer T.A. Depletion-electric-field-induced second-harmonic generationnear oxidized GaAs(001) surfaces // Phys. Rev. B. American Physical Society,1997. Vol. 55, № 16.
P. 10694.130. С. М. Зи. Физика полупроводниковых приборов. Москва: Мир, 1984. 456p.131. Ayari A., Cobas E., Ogundadegbe O., et al. Realization and electricalcharacterizationofultrathincrystalsoflayeredtransition-metaldichalcogenides.132. Ugeda M.M., Bradley A.J., Shi S.-F., et al.
Giant bandgap renormalization andexcitoniceffectsinamonolayertransitionmetaldichalcogenidesemiconductor // Nat. Mater. 2014. Vol. 13, № 12. P. 1091–1095.133. Koval C.A., Olson J.B. Preparation and electrochemical characterization ofWSe2 electrodes having a wide range of doping densities // J. Electroanal.Chem. Interfacial Electrochem. Elsevier, 1987.
Vol. 234, № 1–2. P. 133–143.134. Wang Q.H., Kalantar-Zadeh K., Kis A., et al. Electronics and optoelectronicsof two-dimensional transition metal dichalcogenides // Nat. Nanotechnol.2012. Vol. 7, № 11. P. 699–712.135. Friend R.H., Yoffe A.D. Electronic properties of intercalation complexes ofthe transition metal dichalcogenides // Adv.
Phys. 1987. Vol. 36, № 1. P. 1–94.136. Lee Y.C., Shen J.L., Chen K.W., et al. Observation of persistentphotoconductivity in 2H-MoSe[sub 2] layered semiconductors // J. Appl. Phys.AIP Publishing, 2006. Vol. 99, № 6. P. 63706.137. Britnell L., Ribeiro R.M., Eckmann A., et al. Strong Light-Matter Interactionsin Heterostructures of Atomically Thin Films // Science (80-. ). 2013. Vol. 340,№ 6138. P.
1311–1314.138. Shi H., Yan R., Bertolazzi S., et al. Exciton dynamics in suspended monolayer145and few-layer MoS2 2D crystals // ACS Nano. 2013. Vol. 7, № 2. P. 1072–1080.139. Wickramaratne D., Zahid F., Lake R.K. Electronic and thermoelectricproperties of few-layer transition metal dichalcogenides.
// J. Chem. Phys.2014. Vol. 140, № 12. P. 124710.140. Zhang C., Johnson A., Hsu C.-L., et al. Direct imaging of band profile in singlelayer MoS2 on graphite: quasiparticle energy gap, metallic edge states, andedge band bending. // Nano Lett. 2014.
Vol. 14, № 5. P. 2443–2447.141. Zhang H., Ma Y., Wan Y., et al. Measuring the refractive index of highlycrystalline monolayer MoS2 with high confidence. // Sci. Rep. 2015. Vol. 5.P. 8440.142. Zhang H., Wan Y., Ma Y., et al. Interference effect on optical signals ofmonolayer MoS2 Interference effect on optical signals of monolayer MoS 2 //Appl.
Phys. Lett. 2015. Vol. 101904, № 10. P. 101904.143. Li S.-L., Miyazaki H., Song H., et al. Quantitative Raman Spectrum andReliable Thickness Identification for Atomic Layers on Insulating Substrates// ACS Nano. 2012. Vol. 6, № 8. P. 7381–7388.144. Janisch C., Wang Y., Ma D., et al. Extraordinary Second Harmonic Generationin Tungsten Disulfide Monolayers // Sci. Rep. 2014. Vol. 4, № c. P. 1–5.145. Li J.-J., Li Z.-Y., Zhang D.-Z.
Second harmonic generation in one-dimensionalnonlinear photonic crystals solved by the transfer matrix method // Phys. Rev.E. 2007. Vol. 75, № 5. P. 56606.146. Palik E.D. Handbook of Optical Constants of Solids // Academic Press.Academic Press, 1998. Vol. 1. 804 p.147. Blake P., Hill E.W., Castro Neto A.H., et al. Making graphene visible // Appl.Phys.
Lett. 2007. Vol. 91, № 6. P. 63124.146148. Jung I., Pelton M., Piner R., et al. Simple Approach for High-Contrast OpticalImaging and Characterization of Graphene-Based Sheets // Nano Lett. 2007.Vol. 7, № 12. P. 3569–3575.149. Katzke H., Tolédano P., Depmeier W. Phase transitions between polytypes andintralayer superstructures in transition metal dichalcogenides // Phys. Rev. B.American Physical Society, 2004. Vol. 69, № 13. P. 134111.150. Ribeiro-Soares J., Almeida R.M., Barros E.B., et al. Group Theory analysis ofphonons in two-dimensional Transition Metal Dichalcogenides // Phys.
Rev.B. 2014. Vol. 115438. P. 32.151. Huo N., Yang S., Wei Z., et al. Photoresponsive and gas sensing field-effecttransistors based on multilayer WS₂ nanoflakes. // Sci. Rep. Nature PublishingGroup, 2014. Vol. 4. P. 5209.152. Sobolev V. V., Sobolev V.V. Optical spectra of molybdenum disulfide in theregion between 1 and 30 eV // J.
Appl. Spectrosc. Kluwer AcademicPublishers-Plenum Publishers, 1994. Vol. 61, № 1–2. P. 532–535.153. Shen Y.R. The Principles of Nonlinear Optics. New York, NY: Wiley, 1984.154. Lu H.A., Wills L.A., Wessels B.W., et al. Second-harmonic generation ofpoled BaTiO3 thin films // Appl. Phys. Lett. AIP Publishing, 1993. Vol. 62, №12. P. 1314.155.
Hsu W.T., Zhao Z.A., Li L.J., et al. Second harmonic generation fromartificially stacked transition metal dichalcogenide twisted bilayers // ACSNano. 2014. Vol. 8, № 3. P. 2951–2958.156. Li Y., Rao Y., Mak K.F., et al. Probing symmetry properties of few-layerMoS2 and h-BN by optical second-harmonic generation // Nano Lett. 2013.Vol. 13, № 7. P. 3329–3333.157. Kumar N., Najmaei S., Cui Q., et al.
Second harmonic microscopy ofmonolayer MoS2 // Phys. Rev. B. American Physical Society, 2013. Vol.14787, № 16. P. 161403.158. Malard L.M., Alencar T. V., Barboza A.P.M., et al. Observation of intensesecond harmonic generation from MoS2 atomic crystals // Phys.
Rev. B Condens. Matter Mater. Phys. 2013. Vol. 87, № 20. P. 1–5.159. Kulyuk L., Charron L., Fortin E. Radiative properties ofMoS 2layeredcrystals // Phys. Rev. B. American Physical Society, 2003. Vol. 68, № 7. P.75314.160. Kulyuk L., Dumcehnko D., Bucher E., et al. Excitonic luminescence of theBr 2-intercalated layered semiconductors 2 H − WS 2 // Phys. Rev. B.American Physical Society, 2005. Vol. 72, № 7. P. 75336.161. Weber J., Schmid W., Sauer R.
Localized exciton bound to an isoelectronictrap in silicon // Phys. Rev. B. American Physical Society, 1980. Vol. 21, №6. P. 2401–2414.162. Chen F. Micro- and submicrometric waveguiding structures in optical crystalsproduced by ion beams for photonic applications // Laser Photon. Rev. 2012.Vol. 6, № 5. P. 622–640.163. Volk T.R., Kokhanchik L.S., Gainutdinov R. V., et al. Microdomain patternsrecorded by an electron beam in he-implanted optical waveguides on X-CutLiNbO3 crystals // J. Light. Technol.