Лекция 5 (1087448)

Файл №1087448 Лекция 5 (Шесть лекций)Лекция 5 (1087448)2018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Лекция 5. Физические и математические основы оптической обработки информации

1. Понятие оптического сигнала.

В оптических системах обработки информации под оптическим сигналом понимается распределение амплитуды и фазы световой волны в различных плоскостях оптической системы, перпендикулярных к ее оси и описываемое двумерной функцией координат.

Скалярное поле в точке на плоскости с координатами (x,y), создаваемое монохроматическим источником света можно описать выражением:

(1.1)

Функция U(x,y,t) - скалярная функция координат и времени, числено равная мгновенному значению напряженности электрического поля световой волны E(x,y,t); A(x,y) - амплитуда колебаний напряженности электрического поля, а (x,y) – фаза световой волны в точке (x,y); f – частота колебаний.

В комплексной форме этой записи соответствует функция

Величина представляет собой комплексную амплитуду электромагнитного колебания. Эту величину принято называть оптическим сигналом. Временной множитель , являющийся для монохроматического сигнала гармонической функцией времени, обычно опускают, рассматривая в качестве сигнала только стоящую перед этим множителем комплексную функцию координат (далее «точка» при записи комплексной функции будет опускаться).

Понятие транспаранта

Для формирования и ввода в оптическую систему сигнала используются оптические транспаранты, на которые пространственный оптический сигнал записывается с использованием специальной технологии. Оптическим транспарантом называется оптический элемент, устанавливаемый на пути пучка света и осуществляющий заданное преобразование амплитуды и фазы световой волны. Это может быть диапозитив, диафрагма, поляроид, фазовая пластинка и т. п.

Рис. 2.1

Действие транспаранта характеризуется комплексной функцией пропускания T(x,y). При этом распределение амплитуды светового поля после транспаранта будет иметь вид (рис.2.1):

ST(x,y) = S(x,yT(x,y) (1.2)

Различают амплитудные (например, щели, сетки, диафрагмы), фазовые (призмы, линзы) и амплитудно-фазовые (светофильтры, голограммы, линзы с амплитудной маской) оптические транспаранты.

2. Математический аппарат методов обработки информации

2. 1. Преобразование Фурье

Значительная часть оптических методов обработки информации основана на использовании преобразования Фурье.

В основе анализа Фурье лежит разложение сигнала в частотный спектр.

Частотный спектр одномерных сигналов

В курсах математики доказывается, что любую периодическую функцию f(t) периода T можно представить в виде дискретного ряда Фурье

где – круговая частота n-ой гармонической составляющей, Cn – комплексная амплитуда n-ой гармоники

Совокупность коэффициентов Cn называют спектром функции f(t); при этом | Cn | есть амплитуда гармоники частоты ωn, arg Cn – относительный фазовый сдвиг.

Пример 1. Периодическая функция f(t) и ее спектр.

Рис. 2.1. Периодическая последовательность прямоугольных импульсов (а), ее спектр
на интервале –
, +, (b) и спектр по положительным частотам (с).

В общем случае, когда функция f(t) не является периодической, она может быть представлена по теореме Фурье в виде непрерывного набора гармонических колебаний с различными частотами.

(2.3)

(2.4)

Соотношения (2.3) и (2.4) называются обратным и прямым Фурье-преобразованием соответственно. В общем случае спектр F(ω) оказывается непрерывным.

Пример 2. Одиночный прямоугольный импульс длительности t и амплитуды A.

Рис. 2.2. Спектр одиночного прямоугольного импульса.

Полуширина «главного максимума» функции F(ω) равна ω= 2π/ t .

По аналогии с преобразованием Фурье для одномерного сигнала можно определить преобразование Фурье для двумерного оптического сигнала:

Обратное преобразование Фурье: (2.3)

Прямое преобразование Фурье (2.4)

где fx и fyпространственные частоты светового распределения вдоль координат x и y соответственно, – пространственный двумерный спектр Фурье. Пространственные частоты fx и fy имеют размерность [м-1].

Представление двумерных функций интегралом Фурье можно рассматривать как их представление в виде бесконечного набора (когерентной суперпозиции) элементарных функций вида с комплексной амплитудой (вес в разложении) . Данная элементарная функция описывает простейшее - гармоническое - распределение амплитуды поля в плоскости (x,y) с периодом L, равным:









Прямое преобразование Фурье удобно обозначать как действие оператора интегрирования на заданную функцию Ф{ }, а обратное преобразование Фурье – как действие оператора Ф-1{ }:

– обратное преобразование Фурье (2.5)

– прямое преобразование Фурье (2.6)

2.2. Свойства преобразования Фурье

1) Изменение масштаба: растяжение координат в пространственной области приводит к их сжатию в области пространственных частот.

Ф{ }= (2.7)

2) Смещение (сдвиг): смещение функции в пространственной области приводит лишь к дополнительному сдвигу фазы в частотной области, а модуль фурье-образа остается неизменным.

(2.8)

3) Формула Парсеваля: энергия может быть подсчитана как в пространственной, так и в частотной областях

(2.9)

Понятие свертки функций

Уравнение свертки:

(2.10)

Свертка обозначается символом

(2.11)

Выходной сигнал линейной системы может быть получен как свертка его входного сигнала и импульсной характеристики системы.

Понятие корреляции функций

Корреляционная функция показывает степень сходства между сигналом и его сдвинутой копией – чем больше значение корреляционной функции, тем это сходство сильнее.

Пусть даны два сигнала, описывающиеся функциями s1(t) и s2(t)

Корреляционная функция (функция взаимной корреляции) этих двух сигналов определяется выражением:

(2.12)

Корреляция обозначается символом

(2.13)

Если функция сравнивается сама с собой, то функцию rs(t) называют автокорреляционной функцией

(2.14)

Взаимная корреляция и свёртка взаимосвязанны:

(2.15)

4) Теорема свертки.

Свертка двух функций U(x,y) и H(x,y) записывается в виде:

(2.16) или (2.17)

Теорема свертки утверждает, что преобразование Фурье от свертки функций равно произведению фурье-образов этих функций.

(2.18)

Согласно обратной теореме свертки: Фурье-образ произведения двух функций равен свертке Фурье-образов этих же функций: (2.19)

5) Теорема автокорреляции

Преобразование Фурье от операции автокорреляции функции равно квадрату модуля Фурье-образа этой функции:

(2.20)

3. Дифракция света

Дифракция в первоначальном смысле - огибание волнами препятствий, в современном, более широком смысле - любые отклонения при распространении волн от законов геометрической оптики.

Причина дифракции, как и интерференции, - суперпозиция волн, которая приводит к перераспределению интенсивности. Если число интерферирующих источников конечно, то говорят об интерференции волн. При непрерывном распределении источников говорят о дифракции волн.

Для решения задачи дифракции света используется формула Кирхгофа.

Представление поля в дальней зоне через интеграл Фурье

В когерентной оптике преобразование Фурье описывает дифракцию Фраунгофера при прохождении когерентного пучка через оптическую систему с достаточно малой угловой апертурой. Действительно, любая дифракционная оптическая система с помощью когерентных волн кроме изображения объекта, определяемого законами геометрической оптики ставит ему в соответствие двумерный фурье-образ на плоскости, определяемый законами дифракции.

Дифракция Фраунгофера наблюдается, если выполняется условие дальней зоны: H>>D2/λ.

4. Линза – как оптический элемент, осуществляющий преобразование Фурье

Основными компонентами оптических систем обработки информации являются тонкие сферические линзы, выполняющие двухмерное преобразование Фурье.

Рис. 4.1. Схема оптической системы, осуществляющей преобразование Фурье

Если на вход такой системы (рис. 4.1) поступает оптический сигнал U0(x0,y0), то на выходе появляется сигнал U(xf,yf), связанный с входным сигналом следующим соотношением (при d = F):

(4.1)

Из сравнения выражения (4.1) с (2.4) видно, что интеграл в выражении (5.1) есть Фурье-преобразование функции U0(x0,y0) с пространственными частотами:

. (4.2)

Таким образом, выходной сигнал с точностью до постоянного множителя совпадает с фурье-образом входного сигнала. Поэтому выходную плоскость такой системы называют частотной или фурье-плоскостью.

Следует отметить, что фурье-образ входного оптического сигнала существует в виде физичеcки реального пространственного распределения комплексных амплитуд светового поля. Благодаря этому когерентные оптические системы могут быть эффективно использованы для решения широкого круга задач, связанных с получением, преобразованием и обработкой фурье-спектров, корреляционных функций и сверток.

5. Принцип пространственной фильтрации оптических сигналов.

Метод оптической пространственной фильтрации – это один из основных методов обработки оптических сигналов.

Рассмотрим оптическую схему рис. 5.1.



Рис. 5.1. Схема пространственной фильтрации сигнала в когерентной оптической системе:


1 – транспарант; 2 – линза; 3 – задняя фокальная плоскость линзы; 4 – пространственный (частотный) фильтр; 5 – линза;
6 – задняя фокальная плоскость трансформирующей линзы 5



В передней фокальной плоскости линзы помещен транспарант 1 с записью какой-либо функции S(x,y). Транспарант освещается когерентным излучением. Линза 2 выполняет прямое преобразование Фурье. В ее задней фокальной плоскости 3 формируется пространственный спектр сигнала S(x,y).

Характеристики

Тип файла
Документ
Размер
713 Kb
Материал
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее