Главная » Просмотр файлов » Синтез автоматических систем в условиях неполной информации о переменных параметрах объекта

Синтез автоматических систем в условиях неполной информации о переменных параметрах объекта (1086432), страница 2

Файл №1086432 Синтез автоматических систем в условиях неполной информации о переменных параметрах объекта (Синтез автоматических систем в условиях неполной информации о переменных параметрах объекта) 2 страницаСинтез автоматических систем в условиях неполной информации о переменных параметрах объекта (1086432) страница 22018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В качестве априорной информации в худшем случае может выступать только знание того, что функция качества имеет экстремум. При этом ни количество экстремумов, ни их положение, ни аналитическое выражение функции качества не известно.

Таким образом, до опыта известно, что в фазовом пространстве существует некоторая изменяющаяся во времени (дрейфующая) поверхность y = f(xl,x2,...,xn,t), определяемая некоторой функцией качества и имеющая один или несколько экстремумов. Экстремальная поверхность ограничена, так как всегда ограничены координаты х12,...,хп.

Система экстремального управления должна вывести и удержать рабочую точку в глобальном экстремуме (maximum maximorum или minimum minimorum).

Рисунок 1.3 - Дрейф экстремальных характеристик объекта: а - по вертикали; б - по горизонтали и вертикали

Для простоты рассмотрим не экстремальную поверхность, а экстремальную линию (рисунок 1.3). Под действием различных возмущающих воздействий экстремальная линия может смещаться или, как принято говорить, дрейфовать. При этом возможны два случая: экстремум дрейфует по вертикали с искажением или без искажения формы (рисунок 1.3 - а), экстремум смещается и по вертикали, и по гори­зонтали (рисунок 1.3 - б).

Если по оси ординат откладывается величина, характеризующая качество работы системы, то естественно желание работать в районе экстремума. В первом случае для этого достаточно каким-либо образом (аналитически или экспериментально) один раз определить положение экстремума, а затем использовать систему стабилизации. Во втором случае необходимо следить за экстремумом. Если закон дрейфа известен, то может быть использована следящая система или система программного управления. При неизвестном законе дрейфа обе системы оказываются неспособными обеспечить цель управления и требуется

специальная экстремальная система.

Следовательно, системы экстремального управления предназначены для стабилизации координат х12,...,хп, объекта управления относительно наперед неизвестных значении хх2,...,хп = хпэ, соответствующих экстремальному значению функции у = f(xl,x2,...,xn).

Допустим, что в некоторый момент времени рабочая точка объекта А (рисунок 1.4) определялась координатами хаа и находилась в экстремуме. Возмущающие воздействия скачком сместили экстремальную характеристику в новое положение. В результате состояние объекта характеризуется точкой В с координатами хвв .Точка В находится между двумя экстремумами. При случайном выборе направления она может прийти в минимум или в максимум. И то и другое положение соответ­ствует экстремальному значению функции.

Рисунок 1.4 - Движение СЭР при скачкообразном смещении характеристики

Очевидно, что для правильной работы экстремальной системы необходимо задать вид требуемого экстремума. Предположим, что необходимо поддерживать максимум выходной координаты. Тогда экстремальный регулятор должен определить направление движения к максимуму и организовать это движение. Определив, что рабочая точка пришла в экстремум (точку С), регулятор должен удержать ее в этом режиме.

Таким образом, задачей экстремального регулятора является поиск значений х,...,хnэ , организация движения координат х12,...,хn к экстремальным

значениям и удержание их в экстремальной рабочей точке.

Стабилизация объекта в экстремуме по существу сводится к многократному повторению решения двух первых задач - определению экстремальных значений и организации движения к ним.

1.2 АНАЛИЗ ОБЪЕКТОВ С НЕЛИНЕЙНЫМИ ХАРАКТЕРИСТИКАМИ И АЛГОРИТМОВ ПОИСКА ЭКСТРЕМУМА

Рассмотрим несколько примеров объектов автоматической оптимизации.

Во многих видах производства в качестве теплоносителя используется тепло газов, получаемых в результате сжигания в топочных устройствах того или иного вида топлива. Статическая характеристика топочного устройства по каналу «расход воздуха на горение - температура топочных газов» имеет экстремальный характер: максимальная температура топочных газов tмакс получается для данного количества сжигаемого топлива QT при вполне определенном количестве подаваемого в топку воздуха Qв (рисунок 1.5).

Рисунок 1.5 - Статические характеристики топочного устройства

Если подавать воздуха меньше, чем необходимо для горения топлива, то не будет полного сгорания топлива, если - больше, то избыток воздуха снизит температуру топочных газов.

Предположим, что САР топки должна обеспечить максимальную температуру топочных газов. При данном расходе топлива QT0 для получения максимальной

температуры tмакс0 нужно регулятору расхода воздуха дать задание поддерживать расход равным Qв0. Система регулирования расхода сможет поддержать максималь­ную температуру топочных газов только при строго постоянной подаче топлива, равной QT0, и отсутствии неконтролируемых возмущений (нерегулируемых подсо­сов воздуха в топку, изменения теплотворной способности топлива и т. д.).

Если существуют любые из этих возмущений, то температура топочных газов не будет максимальной при работе САР. Например, измерение QT0 приводит к

смещению статической характеристики t = f(Qв) топки, и для достижения нового

максимального значения температуры, например tмакс1, нужно поддерживать другой расход воздуха Qв1.

У топочного устройства, как и у любого объекта, существуют неконтролируемые возмущения, которые заранее учесть практически невозможно. К таким возмущениям относятся, например, изменение калорийности топлива, неконтролируемые подсосы воздуха и т. п., воздействие которых будет вызывать отклонение режима от оптимального - отклонение температуры топочных газов от максимальной.

Однако, даже если можно было бы практически скомпенсировать все возмущения, применение САР расхода топлива или воздуха для стабилизации режима объекта, имеющего экстремальную статическую характеристику, вблизи оптимального значения (совпадающего с экстремумом) в принципе невозможно. Это объясняется тем, что САР может нормально функционировать, если в процессе ее работы выполняется условие:

где - изменение регулируемого параметра;

: - изменение управляющего воздействия.

Изменение знака в процессе работы САР вызывает обращение знака в

цепи замкнутых воздействий системы, что приводит к потере устойчивости. Очевидно, что это условие как раз и не соблюдается для экстремальной статической характеристики объекта вблизи экстремума, т. е. вблизи оптимального режима, если он совпадает с экстремумом.

Задача оптимизации возникает и при автоматизации работы паровых котлов.

Статическая зависимость (рисунок 1.6) между КПД котла η и коэффициентом избытка воздуха α, подаваемого в топку котла для сжигания топлива, также имеет экстремальный характер, причем при изменении расхода пара D с котла, (являющегося основным возмущением при эксплуатации котлоагрегата) изменяется значение коэффициента избытка воздуха, соответствующего максимальному значению КПД для данного расхода пара.

Рисунок 1.6 - Статические характеристики котлоагрегата

Общепринятые схемы автоматизации котлоагрегатов с использованием обычных регуляторов стабилизации по самому принципу своего действия не могут обеспечить работу котлоагрегатов на оптимальных по экономичности режимах с максимальным КПД при изменении паросъема с котла.

В применении к двигателю внутреннего сгорания задача оптимизации сводится к подбору такого значения коэффициента избытка воздуха и частоты вращения двигателя, с также угла опережения зажигания, при которых эффективный расход топлива будет наименьшим.

Рассмотрим характеристики двигателя внутреннего сгорания (рисунок 1.7).

Рисунок 1.7 - Статические характеристики двигателя внутреннего сгорания

изменении частоты вращения.

В системе координат мощность N частота вращения двигателя n построены статические характеристики двигателя для различных степеней открытия S дросселя. Характеристики показывают, что мощность двигателя N изменяется с изменением частоты вращения, достигая при некотором значении попт максимума. Наивыгоднейшая частота вращения попт зависит от степени дросселирования. Поэтому при каждом изменении положения дроссельной заслонки оптимальный режим работы двигателя (максимум мощности) достигается при соответствующем

изменении частоты вращения.

При эксплуатации самолетов возникает задача обеспечить максимальную дальность полета при заданном запасе топлива. Зависимость километрового расхода Q топлива от скорости полета и для различных полетных весов G также имеет экстремальный характер (рисунок 1.8).

Рисунок 1.8 - Статические характеристики летательного аппарата

В этом случае при изменении полетного веса самолета (за счет сгорания топлива) для обеспечения минимального километрового расхода топлива необходимо все время подбирать соответствующую оптимальную скорость полета.

При производстве серной кислоты контактным способом одним из основных технологических процессов является процесс окисления сернистого ангидрида S02 в серный ангидрид S03. Процесс окисления производится в контактном аппарате, в котором имеется несколько слоев катализатора (окислов ванадия). Газ, содержащий S02 и кислород, проходит последовательно все слои катализатора, где S02 окисляется в S03. Основной показатель эффективности работы контактного аппарата - так называемая степень контактирования х (степень окисления), которая показывает, какая часть исходного S02 окислилась в S03. Целью технологического процесса является возможно более полное окисление S02, поэтому степень контактирования необходимо поддерживать на максимальном уровне.

Управляющим воздействием, влияющим на процесс окисления, служит изменение температуры газа перед слоем катализатора tвx.

В процессе работы может изменяться количество газа, поступающего в контактный аппарат. Содержание кислорода и сернистого ангидрида в газе.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее