lect6opt (1083141), страница 7

Файл №1083141 lect6opt (Лекции Огурцова по физике) 7 страницаlect6opt (1083141) страница 72018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Лекции по физике.Оптикаϕ = (α1 − γ 1 ) + (α 2 − γ 2 ) = α1 + α 2 − Aα nγ1Если углы A и α1 (а значит и α 2 , γ 1 и γ 2 ) малы, то 1 =и 2 = .γ1 1α1 nПоскольку γ 1 + γ 2 = A , то α 2 = γ 2 n = n( A − γ 1 ) = n( A − α1 n) = nA − α1 , откудаα1 + α 2 = nA . Поэтому ϕ = A(n − 1) — угол отклонения лучей призмой тембольше, чем больше преломляющий угол призмы.ВеличинаD=dndλназываетсядисперсиейвещества.ДлявсехN06–166–17Разности хода ∆ лучей, идущих от двух соседних щелей, будут дляданного направления ϕ одинаковы в пределах всей дифракционной решетки:∆ = CF = (a + b) sin ϕ = d sin ϕ .Очевидно, что в тех направлениях, в которых ни одно из щелей не распространяет свет, он не будет распространяться и при двух щелях, т.е.

прежние(главные) минимумы интенсивности будут наблюдаться в направленияхa sin ϕ = ± mλ (m = 1, 2, 3,K) . Кроме того, вследствие взаимной интерферен-ции, в направлениях, определяемых условием d sin ϕ = ± ( 2m + 1) λ 2 световыелучи, посылаемые двумя соседними щелями, будут гасить друг друга — возникнут дополнительные минимумы.

Наоборот, действие одной щели будетусиливать действие другой, если d sin ϕ = ±2m λ 2 ( m = 1, 2, 3,K) — условиеглавных максимумов.В общем случае, если дифракционная решетка состоит из N щелей, то:•условие главных максимумов: d sin ϕ = ± mλ ( m = 1, 2, 3,K)условие главных минимумов: a sin ϕ = ± mλ ( m = 1, 2, 3,K)•между двумя главными максимумами располагаетсяN −1дополнительных минимумов, разделенных вторичными максимумами,создающими слабый фон. Условие дополнительных минимумов:d sin ϕ = ± m′ λ N , (где m′ может принимать все целочисленные значения,кроме 0, N, 2N,… при которых данное условие переходит в условие главныхмаксимумов).Амплитуда главного максимума есть сумма амплитуд колебаний откаждой щели Amax = NA1 .

Поэтому, интенсивность главного максимума в•N 2 раз больше интенсивности I1 , создаваемой одной щелью в направлении2главного максимума: I max = N I1 .Например, на рисункепредставленадифракционная картинадля N = 4 . Пунктирнаякриваяизображаетинтенсивностьотодной щели, умножен2ную на N .Положение главных максимумов зависит от длины волны λ , поэтомупри пропускании через решетку белого света все максимумы, кромецентрального ( m = 0) , разложатся вm= –2–1 0 +1 +2спектр, фиолетовая область которогобудет обращена к центру дифракционнойцвет к ф к ф б ф к ф ккартины, красная — наружу.

Поэтомудифракционная решетка может быть использована как спектральный прибордля разложения света в спектр и измерения длин волн.Число главных максимумов, даваемое дифракционной решеткой:m≤dλА.Н.Огурцов. Лекции по физике.(поскольку sin ϕ ≤ 1 ).22. Дифракция на пространственной решетке.Дифракция света наблюдается на одномерных решетках (системапараллельных штрихов), на двумерных решетках (штрихи нанесены вовзаимно перпендикулярных направлениях в одной и той же плоскости) и напространственных (трехмерных) решетках — пространственныхобразованиях, в которых элементы структуры подобны по форме, имеютгеометрически правильное и периодически повторяющееся расположение, атакже постоянные (периоды) решеток, соизмеримые с длиной волныэлектромагнитного излучения.Кристаллы, являясь трехмерными пространственными образованиями спостоянной решетки порядка 10–10м, могут быть использованы для наблюдения−12÷−810 м) .дифракции рентгеновского излучения (λ ≈ 10Представим кристалл в виде параллельных кристаллографическихплоскостей, отстоящих друг от друга на расстоянии d .

Пучок параллельныхмонохроматических лучей (1, 2) падает под углом скольжения ϑ (угол междунаправлениемпадающихлучейикристаллографическойплоскостью)ивозбуждаетатомыкристаллическойрешетки, которые становятся источникамикогерентных вторичных волн (1’ и 2’),интерферирующихмеждусобой.Максимумыинтенсивностибудутнаблюдаться в тех направлениях, вкоторых все отраженные атомнымиплоскостями волны будут находиться водинаковой фазе: 2d sin ϑ = mλ ( m = 1, 2, 3,K) — формула Вульфа–Брэггов.Эта формула используется в:1) рентгеноструктурном анализе — если известна λ рентгеновскогоизлучения, то, наблюдая дифракцию на кристаллической структуренеизвестного строения и измеряя ϑ и m , можно найти d , т.е.определить структуру вещества;2) рентгеновской спектроскопии — если известна d , то измеряя ϑ иm , можно найти длину волны λ падающего рентгеновского излучения.23.

Разрешающая способность спектрального прибора.Если бы даже существовала идеальная оптическая система без дефектови аберраций, то все равно изображение любой светящейся точки, вследствиеволновой природы света, будет в виде центрального светлого пятна,окруженного чередующимися темными и светлыми кольцами.Критерий Рэлея — изображения двух близлежащих одинаковыхточечных источников или двух близлежащих спектральных линий с равнымиинтенсивностями и одинаковыми симметричнымиконтурамиразрешимы(разделеныдлявосприятия), если центральный максимумдифракционной картины от одного источника(линии) совпадает с первым минимумомдифракционной картины от другого (рис. (а)).

Приэтоминтенсивность"провала"междумаксимумами составляет 80% интенсивности вмаксимуме. Этого достаточно для разрешенияОптика.

Характеристики

Тип файла
PDF-файл
Размер
616,7 Kb
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее