Разобранные ДЗ - Электростатика (1077936), страница 2
Текст из файла (страница 2)
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
Решение:
Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε,
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
.
Объёмная плотность связанных зарядов , для полярных координат
.
Для определения ёмкости вычислим напряжение на его обкладках
Задача 1.2
Вариант 7
Условие:
Сферический конденсатор имеет радиусы внешней и внутренней обкладок R1 и R0 соответственно. Заряд конденсатора равен q. Величина диэлектрической проницаемости между обкладками меняется по закону от значения ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=2/1, n=2.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε.
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
Объёмная плотность связанных зарядов , для полярных координат
,
Для определения ёмкости вычислим напряжение на его обкладках
Вариант 8
Условие:
Сферический конденсатор имеет радиусы внешней и внутренней обкладок R1 и R0 соответственно. Заряд конденсатора равен q. Величина диэлектрической проницаемости между обкладками меняется по закону от значения ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=2/1, n=3.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
.
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε.
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
Объёмная плотность связанных зарядов , для полярных координат
, Поэтому
Для определения ёмкости вычислим напряжение на его обкладках
Вариант 9
Условие:
Сферический конденсатор имеет радиусы внешней и внутренней обкладок R1 и R0 соответственно. Заряд конденсатора равен q. Величина диэлектрической проницаемости между обкладками меняется по закону от значения ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=3/1, n=2.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε,
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
Объёмная плотность связанных зарядов , для полярных координат
, Поэтому
Для определения ёмкости вычислим напряжение на его обкладках
Вариант 10
Условие:
Сферический конденсатор имеет радиусы внешней и внутренней обкладок R1 и R0 соответственно. Заряд конденсатора равен q. Величина диэлектрической проницаемости между обкладками меняется по закону от значения ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=3/1, n=3.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε,
Определим поверхностную плотность связанных зарядов
, где
косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
.
Объёмная плотность связанных зарядов , для полярных координат
, Поэтому
Для определения ёмкости вычислим напряжение на его обкладках
Задача 1.3
Вариант 11
Условие:
Цилиндрический бесконечно длинный диэлектрический конденсатор заряжен до разности потенциалов U и имеет радиусы внешней и внутренней обкладок R0 и R соответственно. Величина диэлектрической проницаемости между обкладками меняется по линейному закону от значения ε1 до ε2 в интервале радиусов от R до R1, и ε3=сonst в интервале радиусов R1 до R0. Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора на единицу длины.
ε2/ε1=2/1; ε3/ε1=2/1; R0/R=2/1
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
Решение:
Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε.
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
Объёмная плотность связанных зарядов , для полярных координат
. Поэтому
Для определения ёмкости вычислим напряжение на его обкладках
Вариант 12
Условие:
Цилиндрический бесконечно длинный диэлектрический конденсатор заряжен до разности потенциалов U и имеет радиусы внешней и внутренней обкладок R0 и R соответственно. Величина диэлектрической проницаемости между обкладками меняется по линейному закону от значения ε1 до ε2 в интервале радиусов от R до R1, и ε3=сonst в интервале радиусов R1 до R0. Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора на единицу длины.