стр.133-187 (1066275), страница 2
Текст из файла (страница 2)
Для повышения стабильности частоты звуковых генераторов часто применяют задающие генераторы на биениях. Структурная схема задающего генератора содержит два первичных высокочастотных генератора фиксированных частот f1 и f2, смеситель и фильтр промежуточной частоты (рис. 4.4).
Метод биений заключается в том, что колебания звуковой частоты образуются в результате воздействия на нелинейный элемент смесителя двух близких по частоте гармонических колебаний f1 и f2. При этом частота f1 может меняться в пределах от f1 до f1+F, где F — наибольшая частота рабочего диапазона. На выходе смесителя получают комбинационные частоты, в том числе и так называемую промежуточную частоту
Fпч= f2 - f1. Колебание промежуточной частоты РПЧ выделяют фильтром промежуточной частоты.
При создании измерительных генераторов на биениях принимают меры, направленные на обеспечение высокой стабильности частоты первичных генераторов колебаний. Как правило, предусматривают возможность периодической калибровки частоты генератора. Коэффициент нелинейных искажений генерируемых колебаний обычно составляет десятые доли процента и в основном определяется качеством фильтра промежуточной частоты.
Генератор инфранизких частот можно построить по схеме с электронным управлением частотой. Такие устройства принято называть функциональными генераторами.
Характеристики высокочастотных генераторов
В диапазоне радиочастот в средствах измерений применяют как генераторы сигналов, так и генераторы стандартных сигналов. Генераторы сигналов имеют большую среднюю выходную мощность (до 3 Вт) и их используют для питания измерительных передающих антенн и других мощных устройств. Генераторы стандартных сигналов — маломощные источники с низким уровнем выходного напряжения (до 1 В) — применяют при испытаниях и настройке узлов радиоаппаратуры. Основные требования, предъявляемые к ГСС: высокие стабильность частоты и амплитуды выходного сигнала, малый коэффициент нелинейных искажений. В генераторах стандартных сигналов предусматривают возможность получения амплитудной модуляции за счет использования как внешнего, так и внутреннего источников напряжения. Внутренняя модуляция обычно действует на частотах 400 и 1000 Гц.
Характеристики генераторов сверхвысоких частот
Генераторы сверхвысоких частот (СВЧ-генераторы) работают в диапазоне частот 1...40 ГГц. По типу выходного соединителя с исследуемой схемой они делятся на коаксиальные и волноводные, причем последние более высокочастотные. Для СВЧ-генераторов характерно однодиапозонное построение, с небольшим перекрытием по частоте (около октавы — 2 раза). Некалиброванная выходная мощность измерительного СВЧ-генератора достигает десяти ватт, а калиброванная составляет нескольких микроватт. Шкалы калиброванных аттенюаторов СВЧ-генераторов градуируют в дБ, а ГСС — в децибелах и микроваттах.
Генераторы сверхвысоких частот используют для настройки радиоприемных устройств радиолокационных и радионавигационных станций, систем космической связи и спутникового вещания, измерения параметров различных антенн и т.д. Структурная схема СВЧ-генератора показана на рис. 4.5. Особенностями измерительных генераторов этого вида являются относительная простота электронной части схемы и сложность механических узлов приборов. Схема включает собственно СВЧ-генератор, импульсный модулятор, измеритель малой мощности, частотомер и калиброванный аттенюатор. Все высокочастотные узлы генератора соединяют волноводами.
Задающие СВЧ-генераторы измерительных приборов выполняют на отражательных клистронах, диодах Ганна, магнетронах, лавинно-пролетных диодах (ЛПД), лампах бегущей (ЛЕВ) и обратной волны (ЛОВ) и т.д.
В измерительных СВЧ-генераторах необходима тщательная экранировка, так как утечка мощности с ростом частоты возрастает. Провода питания выполняют в виде коаксиальных кабелей со специальным наполнением, хорошо поглощающим энергию СВЧ-колебаний. Повышенные требования предъявляют и к источникам питания, так как активные элементы СВЧ-диапазона чувствительны к нестабильности питающих напряжений.
4.3. Цифровые измерительные генераторы низких частот
Цифровые генераторы низких частот отличаются от аналоговых более эффективными метрологическими характеристиками: высокими точностью установки и стабильностью частоты, малым коэффициентом нелинейных искажений (строго синусоидальной формой), постоянством уровня выходного сигнала. Цифровые генераторы удобнее аналоговых в эксплуатации: выше быстродействие, существенно проще установка требуемой частоты, более наглядна индикация. Цифровые генераторы имеют возможность автоматической перестройки частоты по заранее заданной программе.
Действие цифровых генераторов основано на принципе формирования числового кода с последующим преобразованием его в гармонический сигнал. При этом используют метод аппроксимации формы выходного колебания.
Принципы аппроксимации
Самый простой вид аппроксимации — ступенчатая. Она заключается в представлении (замене) синусоидального колебания напряжением ступенчатой формы, весьма мало отличающейся от синусоидальной кривой (рис. 4.6, а). Аппроксимируемое синусоидальное напряжение u(t)=Uмsinωt дискретизируют во времени (равномерная дискретизация с шагом ∆t) и в интервале, разделяющем два соседних момента времени ti и ti+1 синусоидальное колебание заменяют напряжением постоянного тока — ступенькой, высота которой равна значению аппроксимируемого напряжения в момент ti, т.е. u(ti)=Uмsinωti. В результате такой замены вместо кривой синусоидальной формы получают ступенчатую линию, изображенную на рис. 4.6, а.
При имеющемся периоде Т гармонического колебания число ступенек р, приходящихся на один период, определяют шагом дискретизации: р=T/∆t. Если же из технических соображений число ступенек задано, то изменение шага дискретизации приводит к изменению периода формируемого напряжения, поскольку Т=р∆t. Учитывая, что ti=i∆t, уравнение ступенчатой кривой представляют как u(i∆t)=Umsin(iω∆t) или с учетом р и ω= 2π/T:
Ступенчатая кривая тем точнее приближается по форме к синусоиде, чем больше выбрано число ступеней р. Когда это число велико, ступенчатое напряжение можно рассматривать как низкочастотное синусоидальное напряжение, немного искаженное высокочастотной аддитивной помехой.
Спектральный анализ напряжения, полученного путем ступенчатой аппроксимации, показывает, что его спектр содержит гармонику основной частоты и ряд высших гармоник. При этом оказывается, что ближайшей к основной высшей гармоникой будет составляющая с номером р-1, следующей — гармоника номера р+1, затем гармоники номеров 2р-1 и 2р+1 и т.д. Например, при р=25 и частоте напряжения f основной гармоники ближайшими высшими гармониками будут 24-, 26-, 49-, 51-я гармоники, т.е. напряжения частот 24f, 26f, 49f, 51f. Такие соотношения между основной и высшими гармониками позволяют легко осуществить высококачественную фильтрацию, резко ослабляющую уровни высших гармоник, т.е. получить синусоидальное напряжение, характеризуемое достаточно малым коэффициентом нелинейных искажений.
Структурная схема цифрового генератора представлена на рис. 4.6, б. Импульсный кварцевый генератор вырабатывает периодическую последовательность коротких импульсов с периодом следования Т. На выходе делителя частоты с регулируемым коэффициентом деления g получается периодическая последовательность импульсов с периодом следования ∆t=gТ, задающим шаг дискретизации. Импульсы поступают в счетчик емкостью р. Кодовая комбинация, определяемая числом i импульсов, накопленных в счетчике, передастся в схему ЦАП. Последний вырабатывает напряжение, соответствующее числу i, т.е. u(i∆t)=Umsin(i2π/p). Таким образом формируют р ступенек аппроксимируемой кривой. При накоплении р импульсов счетчик переполняется и сбрасывается в нуль. С приходом (р+1)-го импульса начинается формирование нового периода ступенчатой кривой. Частоту формируемого колебания при фиксированном числе ступенек р регулируют, меняя шаг дискретизации ∆t, что достигается изменением коэффициента деления g делителя частоты.
4.4. Генераторы качающейся частоты и сигналов специальной формы
В измерительной технике часто используют генераторы гармонических сигналов, частоту которых автоматически изменяют (качают) в пределах заданной спектральной полосы.
К генераторам качающейся частоты (ГКЧ; устаревшее название «свип-генератор») относятся источники гармонических колебаний со специальным (линейным, логарифмическим и т.д.) законом автоматического изменения частоты в пределах заданной полосы качания. Полосу качания ∆f определяют как разность конечной fк и начальной fн, частот, т.е. ∆f=fк-fн. В зависимости от ее значения ГКЧ делят на узкополосные (∆f не более 1% максимальной частоты рабочего диапазона или поддиапазона), широкополосные (∆f >1%) и комбинированные.
Структурная схема ГКЧ (рис. 4.7) содержит источник модулирующего напряжения, задающий генератор, схему формирования частотных меток, выходной блок и цифровой индикатор уровня, фиксирующий выходное колебание. Основные параметры данных генераторов — частотные и амплитудные. К первым относят диапазон рабочих частот, полосу качания, длительность автоматического качания частоты и т.д. Ко вторым — уровень выходной мощности (напряжения) при работе на согласованную нагрузку, неравномерность этого уровня при перестройке частоты и пр. К генераторам качающейся частоты предъявляют достаточно жесткие требования по линейности модуляционной характеристики, постоянству выходного уровня мощности и значению побочной модуляции.
В достаточно широких пределах автоматическое качание частоты без коммутации элементов колебательной системы легко реализуют в низкочастотных генераторах на биениях. При этом в качестве перестраиваемого гетеродина может служить LС-генератор с электронным управлением частотой.
В радиотехнике известно несколько способов управления частотой высокочастотных LС-генераторов. Практическое применение находит способ перестройки частоты путем изменения величины барьерной емкости p-n-перехода полупроводникового диода — варикапа, который включают в цепь колебательного контура генератора. Модулирующее напряжение, воздействуя на р-п-переход диода, изменяет его емкость, а следовательно, и частоту генерируемых колебаний.
К генераторам сигналов специальной формы относят источники одиночных или периодических импульсных сигналов, которые могут иметь прямоугольную и отличную от нее форму. Особое место в ряду генераторов специальной формы занимают импульсные (релаксационные) генераторы. Их подразделяют на генераторы периодической последовательности импульсов и генераторы кодовых групп импульсов. Широкое применение находят генераторы периодических последовательностей прямоугольных импульсов. Для формирования прямоугольных импульсов со стабильными длительностью и частотой следования, крутыми фронтами и плоской вершиной используют мультивибраторы, работающие в автоколебательном и ждущем режимах. Обычно в мультивибраторах применяют кварцевую стабилизацию частоты.
Структурная схема импульсного генератора и временные диаграммы ее работы показаны на рис. 4.8. Формирователь временных интервалов может работать в режиме автогенератора (положение ключа 1) или в ждущем режиме (положение ключа 2). Однократный пуск осуществляют нажатием кнопки Кн. Интервал Т определяет частоту следования импульсов f=1/Т. Длительность импульсов определяется временем задержки, как в одноименной схеме: τи=τз. По длительности вырабатываемых импульсов генераторы делят на микросекундные и наносекундные.















