МТ11-61 (1063104)
Текст из файла
Рубцов М. А., МТ11-61. Вариант №12.
1.Исходные данные
В проекционной системе фотошаблон представляет собой решетку с периодом Р и шириной прозрачной полосы W . Излучение имеет длину волны , объектив – числовую апертуру А. Интенсивность I излучения на шаблоне распределена равномерно.
Рассчитать распределение интенсивности в плоскости изображения. Оценить возможность проведения фотолитографии при заданных параметрах.
- длина волны излучения
А=0.4- апертура объектива
Р=1.8 мкм- период решетки на фотошаблоне
W=0.9- ширина светлой полосы
Профиль распределения интенсивности на объекте- прямоугольный
2.Краткое описание последовательности выполняемых этапов.
1.Раскладываем заданную прямоугольную функцию в ряд Фурье в тригонометрической и комплексной форме.
2.Определяем предельные частоты, которые пройдут через апертуру объектива.
3.Для каждой прошедшей частоты определяем ОПФ (оптическая передаточная функция) системы.
4.Домножаем амплитуду каждой прошедшей частоты на соответствующее ей значение ОПФ.
5.Сложение полученных гармоник в плоскости изображения.
6.Оценка возможности проведения фотолитографии при заданных параметрах.
3.Математическое описание основных этапов.
-
Периодическую функцию
аргумента
можно разложить в ряд Фурье:
Разложение в тригонометрической форме
Где ;
;
.
В комплексной форме разложение Фурье имеет следующий вид:
Где ;
2. Воспользуемся формулой , в свою очередь
. В итоге ,подставив выражение для
из второй формулы в первую получаем окончательную формулу :
3. По формуле c учетом
получаем
4. В общем виде можно записать для тригонометрического разложения:
5. Сложение всех гармоник можно в общем виде записать
6. Оценка возможности проведения фотолитографии при заданных параметрах производится по формуле:
- амплитудное значение интенсивности
- среднее значение интенсивности
Если поставить и
в формулу то получаем выражение
Полученный контраст не должен быть допустимого значения , равного
4.Програмное обеспечение
1. Вычисления выполнены в программет Mathcad 14
2. Microsoft Word
-
Расчет применительно к конкретной функции интенсивности.
5.1. Разложение в тригонометрической форме
Период функции равен P=2W
Определим значения коэффициентов ,
и
:
Так как функция является чётной функцией, т.е. для любых значений,
, то
С учетом того, что .
Представим функцию в виде ряда Фурье:
5.2. Разложение в комплексной форме
Для четной функции:
Определим значение коэффициента :
Получим комплексную форму разложения функции в ряд Фурье:
-
Сравнение результатов
Зная, что ,
, выразим
через
и
:
Получили, что комплексная форма разложения равна тригонометрической форме, что и т.д. В этом случае можно утверждать, что разложение функции в ряд Фурье верно.
Для полученного разложения находим предельные частоты, пропускаемые объективом.
Так как n- целое число то в разложении функции в ряд Фурье нужно учитывать только первые три члена разложения. Другие члены нет смысла учитывать, так как такие частоты не проходят через апертуру объектива.
Входное распределение интенсивности и его представление тремя первыми членами разложения :
Находим ОПФ системы:
Домножаем каждую гармонику соответствующий ей коэффициент передачи :
При этом :
Профиль распределения интенсивности в изображении:
Для наглядности построим графика каждой гармоники:
I 1- первая гармоника; I2- вторая гармоника; I3-третья гармоника; I0- суммарный график
Итоговые графики
Изобразим на одном графике входное распределении интенсивности, его представление первыми тремя членами, и выходное распределение интенсивности:
6.Оценка возможности проведения литографии.
7. Вывод.
Т.к. , то получение изображения в данной литографической системе невозможно.
P.S. Ещё раз напомню о том, что я так и не получил критики по проекту www.vacuum-world.com
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.