Н.П. Алешин, А.Л. Ремизов, А.А. Дерябин - лекции по ККСС (1050136), страница 20
Текст из файла (страница 20)
Рис. 11.6. а) Прибор для выдувания пузырьков в жидкости. б)-г) В начале выдувания пузырька радиус кривой поверхности жидкости постепенно уменьшается, д) Под конец выдувания радиус поверхности снова увеличивается
Рис. 11.7. Две среды граничат по сферической поверхности радиуса R, обращенной вогнутостью влево. При равновесии давление среды слева от границы больше, чем давление среды справа от границы, на величину 2σ/R
Расчет приводит к следующему выводу: при наличии сферической поверхности жидкости радиуса R имеется разность давлений
Где p2— давление со стороны вогнутости, а р1— давление со стороны выпуклости (рис. 11.7).
11.5. Капиллярные явления
В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела очень часто впитывают их в себя. На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе и т. д.
Очень часто жидкость, впитываясь в пористое тело, поднимается вверх; например, поднимаются вверх чернила, впитывающиеся в промокательную бумагу. Подобные явления можно также наблюдать в очень узких стеклянных трубках. Узкие трубки называются капиллярными.
Опустим такую трубку в жидкость. Если жидкость смачивает стенки трубки, то она поднимается по стенкам трубки над уровнем жидкости в сосуде и притом тем выше, чем уже трубка. Если жидкость не смачивает стенки, то, наоборот, уровень жидкости в узкой трубке устанавливается ниже, чем в широкой (рис. 11.8).
Как объясняются описанные явления? Поверхность жидкости около стенки изгибается вверх или вниз в зависимости от того, смачивает она стенку или нет. В узкой трубке края жидкости образуют всю поверхность жидкости так, что поверхность имеет вид, напоминающий полусферу (так называемый мениск), в случае смачивающих жидкостей обращенную вверх вогнутостью, а в случае несмачивающих — вверх выпуклостью (рис. 11.9). Наличие кривой поверхности жидкости связано с наличием разности давлений: под вогнутым мениском давление жидкости меньше, чем под плоским, и это ведет к тому, что в случае вогнутого мениска жидкость поднимается до тех пор, пока гидростатическое давление не компенсирует разность давлений; под выпуклым мениском давление больше, чем под плоским, и это ведет к опусканию жидкости в узких трубках.
Рис. 11.8 Уровень ртути в узкой трубке ниже, чем в широкой (для несмачивающей жидкости) | Рис. 11.9. Форма мениска: а) смачивающей жидкости; б) несмачивающей жидкости |
Таким образом, в узкой трубке смачивающая жидкость устанавливается выше уровня в широкой трубке, а несмачивающая устанавливается ниже уровня в широкой трубке. Высота поднятия жидкости в капиллярной трубке тем больше, чем больше поверхностное натяжение жидкости и чем меньше радиус трубки и плотность жидкости. Это положение можно отнести и к твердым материалам, пронизанным тонкими каналами неправильной формы. Если материал смачивается водой, то она втягивается в него на тем большую высоту, чем уже каналы.
11.6. Высота поднятия жидкости в капиллярных трубках.
Итак, высота Н поднятия жидкости в капиллярных трубках зависит от радиуса R канала в трубке, поверхностного натяжения σ и плотности жидкости. Выведем формулу, связывающую эти величины. Наибольший интерес представляют случаи, когда жидкость хорошо смачивает стенки трубки, т. е. стремится растечься по поверхности стенок. Наш расчет будет относиться именно к этим случаям.
Примем, что поверхность жидкости внутри капиллярной трубки имеет строго сферическую форму, радиус которой равен радиусу капилляра (рис. 11.10). Непосредственно под вогнутым мениском давление жидкости меньше атмосферного давления рат на величину 2σ/R, т. е. равно рат — 2σ/R. На глубине h, соответствующей уровню жидкости в широком сосуде, к этому давлению прибавляется гидростатическое давление ρgh. В широком сосуде на том же уровне, т. е. непосредственно под плоской свободной поверхностью жидкости, давление равно атмосферному давлению рат. Так как имеет место равновесие жидкости, то давления на одном и том же уровне равны. Следовательно
т. е. высота поднятия жидкости в капилляре пропорциональна ее поверхностному натяжению и обратно пропорциональна радиусу канала капилляра и плотности жидкости.
Рис. 11.10. К выводу формулы высоты поднятия жидкости
Далее, необходимо ввести понятие угла смачиваемости (рис. 11.11).
Угол θ называеют краевым углом смачивания.
Чем меньше ϴ, тем сильнее смачивание. Предельный случай будет соответствовать полному смачиванию, т.е. растеканию жидкости по всей поверхности твердого тела.
Рис. 11.11. Угол смачивания ϴ
ЛЕКЦИЯ №12. КАПИЛЛЯРНЫЙ КОНТРОЛЬ. ТЕХНОЛОГИЯ КОНТРОЛЯ
12.1 Классификация и особенности капиллярных методов
Капиллярная дефектоскопия - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.
Данный метод пригоден для выявления несплошностей с поперечными размером 0,1 - 500 мкм, в том числе сквозных, на поверхности черных и цветных металлов, сплавов, керамики, стекла и т.п.
Капиллярные методы контроля предназначены для обнаружения невидимых или слабовидимых невооруженным глазом дефектов, выходящих на поверхность, и позволяют контролировать изделия любых форм и размеров, изготовленных как из металлических, так и неметаллических материалов. Имеют ограниченное применение для сварных швов, так как требуют предварительной механической обработки их поверхности с целью удаления чешуйчатости, брызг, окалины и обеспечения плавных переходов между основным и наплавленным металлом. Капиллярный контроль в зависимости от типа проникающего вещества разделяют на контроль с помощью жидких проникающих растворов различного состава и контроль с применением фильтрующихся суспензий.По способу получения первичной информации (в зависимости от состава проникающего раствора) выделяют яркостный, цветной, люминесцентный и люминесцентно-цветной методы.
Яркостный (ахроматический) метод основан на регистрации контраста ахроматического индикаторного следа (рисунка) на поверхности контролируемого объекта в видимом излучении. Простейшим примером применения яркостного метода является метод керосиновой или керосино-масляной пробы. При этом в качестве пенетранта используют керосин или его смесь с маслом, а в качестве проявителя — водный или спиртовый раствор мела (спиртовый сохнет быстрее).
Цветной (хроматический) метод в отличие от яркостного основан на регистрации цветных (как правило, ярко-красных) индикаторных следов и отличается несколько большей чувствительностью. Недостатком цветного метода являются высокие требования к остроте зрения, а также отсутствие у контролера нарушений цветового восприятия — дальтонизма (дальтонизм — привилегия мужчин, женщины этим страдают очень редко).
Люминесцентный метод предусматривает введение в пенетрант люминофоров и дополнительно требует наличия источника ультрафиолетового излучения. При облучении индикаторных следов длинноволновым ультрафиолетовым излучением происходит люминесцирование видимым излучением. Это обеспечивает резкое увеличение контраста индикаторных следов на фоне поверхности контролируемого объекта и повышает чувствительность по сравнению с яркостным методом в некоторых случаях в несколько раз.
Люминесцентно-цветной метод объединяет достоинства и недостатки рассмотренных выше методов. Индикаторный след от дефекта при этом светится при ультрафиолетовом облучении и окрашен при освещении в видимом диапазоне спектра.
С применением фильтрующихся суспензий контролируют конструкции, изготовленные из пористых материалов. Суспензия в своем составе помимо проникающей жидкости содержит цветные, люминесцентные или люминесцентно-цветные вещества размером от тысячных до сотых долей миллиметра. Проникающая жидкость при нанесении ее на контролируемую поверхность поглощается пористым материалом. Поглощение происходит наиболее интенсивно в зоне дефектов, при этом взвешенные частицы, размер которых превышает размер пор, отфильтровываются и осаждаются над дефектом. Места скопления отфильтрованных частиц легко обнаруживаются за счет контраста на фоне поверхности контролируемого объекта.
В отдельный класс выделяют методы, в которых для индикации пенетранта, оставшегося в полости дефекта, применяют различные приборные средства. Эти методы называют комбинированными, поскольку в них для обнаружения дефектов помимо капиллярного эффекта используют также другие физические явления. Согласно ГОСТ 18442-80, к ним относят: капиллярно-электростатический, капиллярно-электроиндукционный, капиллярно-магнитный, капиллярно-радиационный поглощения и капиллярно-радиационный отражения.
12.2. Применение капиллярного метода неразрушающего контроля
Капиллярный метод контроля применяется при контроле объектов любых размеров и форм, изготовленных из черных и цветных металлов, легированных сталей, чугуна, металлических покрытий, пластмасс, стекла и керамики в энергетике, авиации, ракетной технике, судостроении, химической промышленности, металлургии, при строительстве ядерных реакторов, в автомобилестроении, электротехники, машиностроении, литейном производстве, штамповке, приборостроении, медицине и других отраслях. Для некоторых материалов и изделий этот метод является единственным для определения пригодности деталей или установок к работе.
Капиллярная дефектоскопию применяют также и для неразрушающего контроля объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достигать требуемой по ГОСТ 21105-87 чувствительности магнитопорошковым методом и магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.
Необходимым условием выявления дефектов типа нарушения сплошности материала капиллярными методами является наличие полостей, свободных от загрязнений и других веществ, имеющих выход на поверхность объектов и глубину распространения, значительно превышающую ширину их раскрытия.
Капиллярный контроль используется также при течеискании и, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации.
Достоинствами капиллярных методов дефектоскопии являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам.