Главная » Просмотр файлов » Постников В.М. - Методические указания к выполнению домашних заданий

Постников В.М. - Методические указания к выполнению домашних заданий (1044765), страница 10

Файл №1044765 Постников В.М. - Методические указания к выполнению домашних заданий (Постников В.М. - Методические указания к выполнению домашних заданий) 10 страницаПостников В.М. - Методические указания к выполнению домашних заданий (1044765) страница 102017-12-27СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

выбирает наиболее приемлемое, с его точки зрения, помещение для размещенияслужбы.Результаты этих расчетов таковы:Y1 = 0,65 ⋅ 0,106 + 0, 23 ⋅ 0,05 + 0,12 ⋅ 0,56 = 0,1517Y2 = 0,65 ⋅ 0,120 + 0, 23 ⋅ 0, 43 + 0,12 ⋅ 0, 27 = 0,2077Y3 = 0,65 ⋅ 0,362 + 0, 23 ⋅ 0, 22 + 0,12 ⋅ 0,13 = 0, 2906Y4 = 0,65 ⋅ 0,412 + 0,23 ⋅ 0,30 + 0,12 ⋅ 0,04 = 0,3390Y = max Y j = 0,33904jТаблица П8.8Матрица сравнения вариантовВ1В2В30,15170,20770,2906432В40,3390YРанг варианта1Наилучший вариант*Анализ приведенных результатов показывает, что наилучшим решением являетсявыбор помещения, обозначенного как В4.На пятом этапе ЛПР осуществляет проверку согласованности своих суждений,учитывающую проверку корректности и безошибочности своих действий при заполненииматриц парного сравнения, Эту проверку ЛПР выполняет в следующейпоследовательности:1) вычисляет максимальное собственное значение каждой из четырех матрицпарных сравнений факторов по ранее приведенному алгоритму (смотри этап.5) Врезультате расчетов имеемλ= 3,117 - максимальное собственное значение матрицы парных сравненийmax Ккритериев;максимальные собственные значения матриц парных сравнений вариантовпомещений по критериям К1, К2 и К3 соответственно имеют значения λmax1,= 4,023λmax2 = 4,233 , λmax3 = 4, 20152) определяет из табл П8.3 значение индекса согласованности длянесимметрических матриц, заполненных случайным образом, и получает для нихследующие значенияR = 0,58R = R = R = 0,90K1233) вычисляет отношение согласованности для каждой матрицы парных сравненийиспользуя выражение (П8.7).52На основании проведенных расчетов получены следующие результаты:OCK = 0,1 OC = 0,0074 OC = 0,08512OC = 0,0823Для каждой из матриц выполняется условие согласованности OC ≤ 0,1 , поэтомусуждения ЛПР следует считать согласованными и выбор варианта помещения В4 вкачестве наилучшего вполне обоснованным.53Приложение 9Выбор перспективного направления развития АСОИиУна основе метода сбалансированного решениясбалансированного решения довольно часто используют приМетодвыбореперспективного направления развития АСОИиУ в условиях полной неопределенности,когда эффективность выбранного варианта развития АСОИиУ существенно зависит отусловий окружающей среды, которые заранее не известны.

Известна лишь матрицадоходов, строки которой соответствуют возможным условиям проявления внешней среды,а столбцы – возможным вариантам развития АСОИиУ.Каждый элемент aij этой матрицы – это доход, который имеет место при этом i - ом( i = 1,..n ) условии внешней среды и j -омj = 1,..m варианте развития АСОИиУ. Приэтомn - число рассматриваемых условий внешней средыm - число рассматриваемых вариантов развития АСОИиУЭтот метод позволяет в качестве наилучшего варианта - Bl развития АСОИиУ,выбратьтакойвариант, из набора рассматриваемых альтернативных вариантов, длякоторого значение критерия максимально.

Критерий сбалансированного решения имеетследующий вид:1 nB = max B j = max [ a max aij + a min acij + a∑ aij1 i2 i3 n i=1ljj](П9.1)При этом обязательно должны быть выполнены следующие условия3∑i =1ai = 1и0 ≤ ai ≤ 1Где a , a , a - соответственно коэффициенты оптимизма, пессимизма и реализма,123рекомендуемые значения которыхa = a = a = 1/ 3123Из этого критерия, при определенных значениях коэффициентов a , можноiполучить широко используемые на практике частные типовые критерии принятиярешения в условиях полной неопределенности, которые приведены в таб.

П9.154Таблица П9.1Значения коэффициентов оптимизма, пессимизма и реализма при которых, изсбалансированного критерия, получают типовые критерии для принятия решения вусловиях полной неопределенности.№Значения коэффициентовНазвание критериясбалансированного критерия1Критерий сбалансированного решенияa = 1/ 3 a = 1/ 3 a = 1/ 323456123a =0a =0a =1123a =1a =0 a =0123a =0a =1 a = 0123a + a =1a =01 23a =0a + a =112 3Критерий ЛапласаКритерий максимаксимумаКритерий ВальдаКритерий ГурвицаКритерий Ходжа-ЛеманаКритерии, приведенные в табл.

П9.1, имеют следующий смысл:1. критерий сбалансированного решения – это критерий взвешенного оптимизма,пессимизма и реализма, позволяет выбрать рациональный вариант развития АСОИиУ;2. критерий Лапласа – это критерий реализма, который предполагает, что все возможныесостояния будущей природы равновероятны и позволяет выбрать такой вариантразвития АСОИиУ, для которого значение среднего дохода с учетом всех возможныхсостояний внешней среды принимает максимальное значение.3. критерий максимаксимума - это критерий “крайнего оптимизма”, предполагает выбортакого развития АСОИиУ, который дает нам самый большой доход без учета реальногосостояния будущей внешней среды.4. критерий Вальда – это критерий “крайнего пессимизма”, так как предполагает выбортакого варианта развития АСОИиУ, который дает нам самый большой доход в самыхнеблагоприятных для нас условиях, т.е выбирается вариант, который имеетмаксимальный минимальный доход среди сравниваемых вариантов.5.

критерий Гурвица – это критерий взвешенного оптимизма-пессимизма, которыйучитывает мнение как оптимиста, так и пессимиста.При a = 1, a = 0 , a = 0 имеет место ситуация крайнего оптимизма и критерий123сводится к критерию максимаксаПри a = 0 , a = 1 , a = 0 имеет место ситуация крайнего пессимизма и критерий123сводится к критерию Вальда,т.е. максимина.На практике, в случае полной неопределенности, рекомендуется использовать значенияa = a = 0,5 и a = 0123556. критерий Ходжа-Лемана – это критерий взвешенного реализма-пессимизма, учитываетмнение, как реалиста, так и пессимиста.если a = 0 , a = 0 , a = 1 , то критерий превращается в критерий Лапласа;123если a = 0 , a = 1 , a = 0 , то критерий превращается в критерий Вальда123На практике, в случае полной неопределенности, рекомендуется использовать значенияa = 0 и a = a = 0,5123Руководство фирмы поставило перед аналитическим отделом задачуПример.определитьцелесообразностьорганизационнойразмещенной вструктурыпроведенияиархитектурыглавном офисе этой фирмы.модернизациисистемыилиреорганизацииобработкиинформации,При этом необходимо рассмотреть исравнить четыре варианта решения:Вариант 1 - (В1) - оставить организационную структуру и архитектуру системы безизменения;Вариант 2 – (В2) - провести модернизацию архитектуры системы;Вариант 3 – (В3) – провести реорганизацию организационной структуры иархитектуры системы;Вариант 4 – (В4) - провести реорганизацию организационной структуры.При выборе варианта решения следует учесть возможные состояния (условия)окружающей среды, т.е.

будущей внешней среды, которая существенно влияет наколичество клиентов фирмы и ее доходы.Условие 1 – (У1) -. обстановка, окружающая фирму, не изменяется;Условие 2 – (У2) - вблизи фирмы возможен ввод в действие филиала конкурирующейфирмы;Условие 3 – (У3) - вблизи фирмы возможно строительство жилого массива;Условие 4 – (У4) - вблизи фирмы возможен ввод в действие филиала конкурирующейфирмы; а также строительство жилого массива.Расчеты, проведенные экономистами фирмы, позволили получить матрицу среднихвозможных доходов фирмы, для рассматриваемых вариантов реорганизации системы привозможных вариантах окружающей среды, которая приведена в табл. П9.2.Необходимо провести ранжирование исходных вариантов по степени ихпредпочтительности и выбрать направление развития АСОИиУ, т. е.

наилучший вариантразвития из рассматриваемых вариантов.56Таблица П9.2Матрица доходов фирмыДоход фирмы от возможного варианта реорганизации организационнойструктуры и архитектуры системы обработки информацииВариант 1Вариант 2Вариант 3Вариант 41098685641416182012131412УсловиевнешнейсредыУсловие 1Условие 2Условие 3Условие 4Решение. Расчеты, проведенные по методу сбалансированного критерия сиспользованием выражения (П9.1), приведены в табл.

П9.3. Коэффициенты, оптимизмаa , пессимизма a и реализма a имеют значения. a = a = a = 1/ 3 , что123123соответствует режиму сбалансированного решенияТаблица П9.3Выбор варианта реорганизации по критерию сбалансированного решенияУсловия внешней средыВозможные варианты решенияВ1В2В3В4Условие 110986Условие 28564Условие 314161820Условие 4121314124,6675,33366,667B = α max a1 i ijB = α min aijj22 i1 nB =αaijj33 n i∑=1j1B j = (Bj1+Bj2+Bj3)2,6671,66721,3333,6673,5833,8333,51110,58311,83311,5B = max B jj11,833 (*)Примечание. Знаком (*) отмечен лучший вариант решенияАнализ результатов, приведенных в табл. П9.3 , показывает, что наилучшим вариантомразвития АСОИиУ по методу сбалансированного решения,неопределенности,являетсявариантв условиях полнойВ3. Ранжирование вариантов по степенипредпочтения имеет вид: В3 ≻ В4 ≻ В1 ≻ В257.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее