Главная » Просмотр файлов » Стентон Гланц - Медико-биологическая статистика

Стентон Гланц - Медико-биологическая статистика (1034784), страница 32

Файл №1034784 Стентон Гланц - Медико-биологическая статистика (Стентон Гланц - Медико-биологическая статистика) 32 страницаСтентон Гланц - Медико-биологическая статистика (1034784) страница 322017-12-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 32)

Затем нужно провести из нее перпендикуляр и посмотреть, где его пересекает пара кривых, помеченных числом, равным объему выборки. Вертикальные координаты точек пересечения — это и есть границы 95% доверительного интервала. В нашем примере p̂ = 0 и п = 30. Нижняяграница доверительного интервала — 0, верхняя — около 0,1.Тем самым с вероятностью 95% мы можем утверждать, что рискпобочного действия не превысит 10%.Предположим, что в одном случае из 30 препарат все-такиоказал побочное действие.

Тогда p̂ = 1/30 = 0,033 иs pˆ ==0,033 (1 − 0,033)= 0,033.30Используя нормальное приближение, мы получили бы0,033 – 1,96 × 0,033 < р < 0,033 + 1,96 × 0,033,то естьГЛАВА 7216–0,032 < р < 0,098.Понятно, что ни в каком случае доля не может быть отрицательной величиной, хотя величина интервала, как окажется, определена правильно.Какой интервал даст биномиальное распределение? По рис. 7.4находим, что это интервал от 0 до примерно 0,13. Обратите внимание, что он не сильно отличается от интервала, найденного дляp̂ = 0.

Так и должно быть, ведь различие между отсутствием осложнений и одним осложнением весьма незначительно.Заметьте, что чем меньше объем выборки, тем сильнее онвлияет на величину доверительного интервала. Предположим,мы бы дали препарат не 30, а 10 добровольцам. Тогда нижнийпредел 95% доверительного интервала, конечно, остался бы нулем, но верхний был бы уже не 13, а 33%.ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ ДЛЯ ЗНАЧЕНИЙ*До сих пор нас интересовали доверительные интервалы для техили иных параметров распределения, например среднего µ илидоли р. Нередко, однако, нужен доверительный интервал длясамих значений измеряемого признака. Например, мы хотим оценить диапазон, в который будет попадать 95% всех значений.Особенно часто подобные задачи возникают при определенииграниц нормы какого-нибудь лабораторного показателя. Обычно доверительный интервал значений определяют как выборочное среднее плюс-минус два стандартных отклонения.

Если мыимеем дело с нормальным распределением и объем выборкидостаточно велик (больше 100 человек), то правило двух стандартных отклонений дает верный результат. Как быть, если внашем распоряжении не 100, а менее двух десятков человек,что довольно типично для клинических исследований? Разумеется, об определении границ нормы по столь малой выборке нечегои думать. Тем не менее оценку доверительного интервала можнополучить и тут. Однако от правила двух стандартных отклонений*Описанные ниже методы применимы только к данным, приближенно подчиняющимся нормальному распределению.ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ217Рис. 7.5. 95% доверительные интервалы для роста марсиан, вычисленные потрем выборкам с рис.

2.6. А. В качестве доверительного интервала использовали среднюю величину плюс-минус два стандартных отклонения. Результатоставляет желать лучшего: два интервала из трех не покрывают истинного интервала, заключающего 95% значений. Б. Доверительные интервалы определили как среднее плюс-минус произведение К 0,05 на стандартное отклонение.Ситуация улучшилась — теперь истинный интервал покрывают два интервала.придется отказаться: при малых выборках интервал получаетсяслишком узким.Рассмотрим пример.

На рис. 2.6 представлены распределение по росту всех 200 ныне живущих марсиан, а также три случайные выборки по 10 марсиан в каждой. Рост 95% всех марсиан лежит в пределах от 31 до 49 см. Средний рост марсианина— 40 см, стандартное отклонение — 5 см. Три выборки, изображенные в нижней части рисунка, дают следующие оценкисреднего роста: 41,5, 36 и 40 см. Выборочные стандартные отклонения — соответственно 3,8, 5 и 5 см. Применим к этим выборочным оценкам правило двух стандартных отклонений.

Полученные доверительные интервалы изображены на рис. 7.5А.Как видим, в двух из трех случаев интервалы не покрывают 95%всех членов совокупности.Причина, в общем, понятна. Выборочное среднее и выбо-ГЛАВА 7218рочное стандартное отклонение — не более чем оценки истинного среднего и стандартного отклонения. Точность этих оценокпри малом объеме выборок невелика. Ошибка в оценке одногопараметра накладывается на ошибку в оценке другого — в результате шансы получить правильный результат и вовсе низки.Рассмотрим выборку на рис. 2.6В.

Нам повезло — оценка стандартного отклонения совпала с истинным его значением 5 см.Однако оценка среднего оказалась заниженной — 36 см вместо40 см. Поэтому интервал смещен относительно истинного среднего и накрывает менее 95% всех значений.Учитывая приблизительность оценок по выборкам небольшогообъема, нужно брать интервал, более широкий, чем плюс-минусдва стандартных отклонения (при выборках большого объема такая страховка не нужна). Этот интервал вычисляют по формулеX − K α s < X < X + K α s,где X — выборочное среднее, s — выборочное стандартное отклонение, а Кα — коэффициент, который зависит от доли f членов совокупности, которые должны попасть в доверительныйинтервал, от вероятности того, что они действительно туда попали 1 – α и от объема выборки п. Этот коэффициент играет примерно ту же роль, что tα или zα.

Для вычисления 95% доверительного интервала нужно определить К0,05; зависимость К0,05 отобъема выборки для различных значений f показана на рис. 7.6.Заметим, что Кα больше, чем tα (как tα больше, чем zα), поскольку учитывает не только значение среднего, но и неопределенность оценок среднего и стандартного отклонения*.При объеме выборки от 5 до 25, типичном для медицинскихисследований, Кα должен быть существенно больше двух. Еслибы в рассматриваемом случае мы взяли интервал в плюс-минусдва стандартных отклонения от среднего, то он покрыл бы заметно менее 95% совокупности. На рис. 7.5Б изображены 95%доверительные интервалы для роста 95% членов совокупности*Вывод формулы для Кα, показывающий его связь с доверительными интервалами для среднего и стандартного отклонения, можно найти, например, в работе: А.

Е. Lewis, Biostatistics, Reinhold, New York, 1966,Chap. 12. Tolerance limits and indices of discrimination.ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ219Рис. 7.6. Коэффициент К0,05 зависит от объема выборки и от доли членов совокупностиf, которые должны попадать в 95% доверительный интервал.марсиан, построенные по трем выборкам с рис. 2.6. Теперь всетри интервала покрывают не менее 95% членов совокупности.Применение правила двух стандартных отклонений к выборкам небольшого объема приводит к зауживанию доверительного интервала значений. Упомянем еще об одной распространенной ошибке. Как говорилось в гл.

2, многие путают стандартную ошибку среднего со стандартным отклонением. Найдя интервал «выборочное среднее плюс-минус две стандартные ошибки среднего», они уверены, что в него попадет 95% совокупности (тогда как на самом деле 95% составляет вероятность, что винтервал попадет среднее по совокупности). В результате интервал допустимых значений оказывается еще более зауженным.ЗАДАЧИ7.1. По данным из задачи 2.6 найдите 90 и 95% доверительные интервалы для среднего числа авторов статей, опубликованных в медицинских журналах за 1946, 1956, 1966 и 1976 гг.7.2. Ранее (задача 3.1) мы познакомились с исследованием220ГЛАВА 7Ч.

О’Херлихи и Г. Мак-Дональда (С. O’Herlihy, H. MacDonald.Influence of preinduction prostaglandin E2 vaginal gel on cervicalripening and labor. Obstet. Gynecol., 54:708—710, 1979). Каквыяснилось, гель с простагландином Е2 сокращает продолжительность родов. Позволяет ли он избежать кесарева сечения?В группе, получавшей гель с простагландином Е2, кесарево сечение потребовалось 15% женщин, в контрольной группе —23,9%. В обеих группах было по 21 женщине. Найдите 95 %доверительные интервалы для доли рожениц, которым требуется кесарево сечение в обеих группах. Найдите 95% доверительный интервал для разности долей. Можно ли утверждать,что простагландин снижает вероятность кесарева сечения?7.3.

По данным задачи 3.1 найдите 95% доверительный интервал для разности средней продолжительности родов у получавших гель с простагландином Е2 и получавших плацебо. Позволяет ли вычисленный доверительный интервал утверждать,что различия статистически значимы?7.4. По данным задачи 5.1 найдите 95% доверительные интервалы для долей больных, которые не чувствовали боли при включенном и выключенном приборе.

Можно ли по этим интерваламоценить статистическую значимость различий?7.5. Поданным задачи 3.2 найдите 95% доверительные интервалы для каждой из групп. В чем заключаются различия междугруппами?7.6. По данным задачи 5.6 найдите 95% доверительные интервалы для доли работ, где данные были получены до планирования исследования.7.7. По данным задачи 2.2 найдите 95% доверительные интервалы для 90 и 95% значений. Результаты представьте на одномрисунке с исходными данными.Глава 8Анализ зависимостейСамый первый из рассмотренных нами примеров (рис.

1.2) былпосвящен вопросу об эффективности диуретика. Пяти людямдали разные дозы препарата, измерили диурез и увидели, чточем больше доза, тем больше диурез. В дальнейшем оказалось,что этот результат не отражает реальной картины и что никакойсвязи между дозой и диурезом на самом деле нет. Тогда мы ещене знали о методах анализа зависимостей. Им посвящена этаглава. Мы узнаем, как с помощью уравнения регрессии выразить связь между дозой диуретика и диурезом (так называемыйрегрессионный анализ) и как с помощью коэффициента корреляции измерить силу этой связи.Подобно тому как мы поступали в предыдущих главах, рассмотрим сначала уравнение регрессии для совокупности, а затемвыясним, как оценивать его параметры по выборке. В гл.

Характеристики

Тип файла
PDF-файл
Размер
6,07 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее