Диссертация (1026302), страница 20
Текст из файла (страница 20)
Intervent. Radiol. 2010. № 33.P. 1180-1185.109. Whittaker D.K. Repeat freeze cycles in cryosurgery of oral tissues //Br. Dental. J. 1975. №. 139. P. 359-465.110. Passy V., D’Ablaing G., Turnbull F. M. Jr., Von Leden H. A comparison ofclinical response to epinephrine // Laryngoscope. 1971. №.81. P. 1917-1925.111. Kondratenko R., Nesterov S., Butorina A. Study of contact methods to coolbiological tissue in local surgery // The 12th International ConferenceCryogenics, 2012. P. 146-149.112. Cooper T.E., Trezek G.T. Rate of lesion Crowth Ground Spherical andCylindrical Cryoprobe // Cryobiology. 1971. № 7.
P. 6.113. Rabin Y., Shitzer A. Exact solution to the one-dimensional inverse-Stefanproblem in nonideal biological tissues //Journal of Heat Transfer. 1995. №.117.P. 425-431.114. Rabin Y., Shitzer A. Combined Solution of the inverse Stefan problem forsuccessive freezing / thawing in nonideal biological tissues // Transactions154of the ASME. 1997. № 119. P. 146-152.115.
Rabin Y. A general model for the propagation of uncertainty in measurementsinto heat transfer simulations and its application to cryosurgery // Cryobiology.2003. № 46. P. 109-120.116. Rabin Y., Korin E. An efficient numerical solution for the multidimensionalsolidification (or melting) problem using a microcomputer // Int. J. Heat MassTransfer. 1993. Vol.36, №. 3. P.
673–683.117. Eyres N.R., Hartree D.R., Ingham J., Jackson R., Sarjant R.J., Wagstaff J.B.The calculation of variable heat flow in solids // Phil. Trans. R. Soc. London.1946. № 240. P. 1-57.118. Rewcastle J. C., Sandison G. A., Saliken J. C., Donnelly B. J., Muldrew K. TheAblative Ratio: A Tool for Quantifying the Potency of an Iceball //Cryobiology.
1999. № 39. P. 324.119. Patankar, S.V. Numerical Heat Transfer and Fluid Flow // HemispherePublishing Corporation. New York, 1980. 197 p.120. Cooper T.E., Trezek G.T. Analitical prediction of the temperature fieldemanating from a cryogenic surgical cannula // Cryobiology. 1970. № 2-3.P. 83-91.121. Seifert J.K., Gerharz, C.D., Mattes F., Nassir F., Fachinger K., Beil C.,Jungingera T. A pig model of hepatic cryotherapy. In vivo temperaturedistribution during freezing and histopathological changes // Cryobiology.2003. № 47. P. 214-226.122. Carslaw, H.S.
and Jaeger, J.C. Conduction of Heat in Solids // OxfordUniversity Press, London, 1959. 520 p.123. Shenghua Liu, Lujia Zou, Shanhua Mao, Limin Zhang, Hua Xu, Tian Yang,Haowen Jiang, Qiang Ding. The safety and efficacy of bladder cryoablation ina beagle model by using a novel balloon cryoprobe // Cryobiology. 2016. № 72.P. 157-160.124. Lijun Sun, Wei Zhang, Heliang Liu, Jianlin Yuan, Weiying Liu, Yan Yang.Computedtomographyimaging-guidedpercutaneousargon–helium155cryoablation of muscle-invasive bladder cancer: Initial experience in32 patients // Cryobiology.
2014. № 69. P.318-322.125. Thaokar C., Rabin Y. Temperature field reconstruction for minimally invasivecryosurgery with application to wireless implantable temperature sensorsand/or medical imaging // Cryobiology. 2012. № 65. P. 270-277.126. Gilbert J.C., Rubinsky B., Wong S.T.S., Brennan K.M., Pease G.R., Leung P.P.Temperature determination in the frozen region during cryosurgery of rabbitliver using MR image analysis // Magn. Reson. Imaging. 1997. № 15 (6).P.
657- 667.127. Rubinsky B., Gilbert J.C., Onik G.M., Roos M.S., Wong S.T.S., Brennan K.M.Monitoring cryosurgery in the brain and the prostate with proton NMR //Cryobiology. 1993. № 30. P. 191-199.128. Thaokar C., Rossi M. R., Rabin Y. A new method for temperature-fieldreconstruction during ultrasound-monitored cryosurgery using potential-fieldanalogy // Cryobiology. 2016. № 72. P. 69-77.129. Rossi M.R., Tanaka D., Shimada K., Rabin Y.
An efficient numericaltechnique for bioheat simulations and its applications to cryosurgery planning// Comput. Methods Programs Biomed. 2006. № 85 (1). P.41-50.130. Onik G., Gilbert J., Hoddick W., Filly R., Callen P., Rubinsky B., Farrel L.Sonographic monitoring of hepatic cryosurgery in an experimental animalmodel // AJR Am. J. Roentgenol. 1985. № 144 (5). P.
1043-1047.131. Rabin, Y., Shitzer, A. Exact solution to the one-dimensional inverse-Stefanproblem in non ideal biological tissue // Journal of Heat Transfer. 1995.№ 117. P. 425-431.132. Yang B. et al. A finite element model for kryosurgery with coupled phasechange and thermal stress aspects // Finite Elements in Analysis and Design.2008.
№. 44. P. 288-297.133. K.J.Chua. Computer simulations on multiprobe freezing of irregularly shapedtumors // Computers in Biology and Medicine. 2011. №. 41. P. 493-505.134. Junkun M., Kelly T.J., Zaim A., Young K., Keck R.W., Seiman S., Jankun J.156Model for cryosurgery of prostate // Computer Aided Surgery. 1999. V.
4, №4. P. 193-199.135. Andrushkiw R.I. Mathematical modeling of freezing front propagation inbiological tissue // Mathematical and Computer Modelling. 1990. V. 13, № 10.P. 1-19.136. Chao B.H., He X., Bishof J.C. Pre-treatment inflammation induced by TNF-αaugments cryosurgical indjury on human prostate center // Cryobiology. 2004.V. 49. № 1. P. 10-27.137. Hasgall P. A., Neufeld E., Gosselin M.C., Klingenbock A., Kuster N. IT’ISDatabase for thermal and electromagnetic parameters of biological tissues //Version 2.5, 2014.138. Chato J.C. Selected thermophysical properties of biological materials // HeatTransfer in Biology and Medicine. 1985.
P. 413-418.139. Valvano J.W., Allen J.T., Bowman H.F. The simultaneous measurement ofthermal conductivity, thermal diffusivity, and perfusion in small volumesof tissue // ASME J. Biomech. Eng. 1984. № 106. P. 192-197.140. Kuzman R. Handbook of Thermodynamic Tables & Charts.
// HemispherePublishing Corporation, 1976.141. Smith J.D., Devireddy R.V., Bischof J.C. Prediction of thermal history andinterface propagation during freezing in biological systems — Latent heatand temperature-dependentpropertyeffects//JSMEJointThermalEngineering Conference. 1999. P. 6499-6520.142. Perl W.
Heat and matter distribution in body tissues and determination of bloodflow by local clearance method // J. Theoret. Biol. 1962. №. 2. P. 201-235.143. Altman P.L., Dittmer D.S. Respiration and circulation. MD: Federation ofAmerican Societies for Experimental Biology (Data Handbook), 1971. 930 p.144. Shitzer A. On the relationship between temperature, blood flow, and tissue heatgeneration // Heat Transfer in Biology and Medicine, Plenum Press. 1985.P.
395-409.145. Marcello Osimani et al. Perfusion MDCT of Prostate Cancer: Correlation of157Perfusion CT Parameters and Immunohistochemical Markers of Angiogenesis// American journal of roentgenology. 2012. № 199 (5). P. 1042-1048.146. Rabin Y., Shitzer A. Numerical solution of the multidimensional freezingproblem during cryosurgery // ASME J. Biomech. Eng. Trans. 1998. № 120(1).
P. 32-37.147. Rabin Y., Stahovich T.F. Cryoheater as a means of cryosurgery control // Phys.Med. Biol. 2002. № 48. P. 619-632.148. Renaud T., Briery P., Andrieu J., Laurent M. Thermal Properties of ModelFoods in the Frozen State // Journal of Food Engineering. 1992. № 15 (2).P. 83-97.149. Dombrovsky L.A., Nenarokomova N.B., Tsiganov D.I., Zeigarnik Y.A.Modeling of repeating freezing of biological tissues and analysis of possiblemicrowave monitoring of local regions of thawing // International Journal ofHeat and Mass Transfer. 2015. № 89.
P. 894-902.158ПРИЛОЖЕНИЕП 1. Возможности параметризации разработанной геометрической моделиМодель содержит 344 параметра, которые возможно изменять при тойили иной необходимости.1.Включениеопределенныхзаданныхкриозондовсогласнокоординате на шаблонной решетке (Рисунок П1.1). Данный тип операциивыполняется в модуле Design Modeler с помощью операции Unsupress, Supress.Рисунок П1.1. Включение определенных заданных криозондов2.
Задание глубины ввода конкретного криозонда и длины оперирующейчасти конкретного криозонда (Рисунок П1.2).o169 параметров – длины основной части криозондов (по умолчанию131 мм). Обозначение в программа Ex1A,…,Ex13G.o169 параметров – длины оперирующей части криозондов (поумолчанию 40 мм).Обозначение в программе – Ex1Aoper,…, Ex13Goper.159Рисунок П1.2. Задание глубины ввода конкретного криозонда3.