КГ_4глава (1024110), страница 8
Текст из файла (страница 8)
в геометрической оптике полагают, что луч света распространяется прямолинейно до тех пор, пока не встретится отражающая поверхность или граница среды преломления. Так будем полагать и мы.
От источников излучения исходит по различным направлениям бесчисленное множество первичных лучей (даже луч лазера невозможно идеально сфокусировать — все равно свет будет распространяться не одной идеально тонкой линией, а конусом, пучком лучей). Некоторые лучи уходят в свободное пространство, а некоторые (их также бесчисленное множество) попадают на другие объекты. Если луч попадает в прозрачный объект, то, преломляясь, он идет дальше, при этом некоторая часть световой энергии поглощается. Подобно этому, если на пути луча встречается зеркально отражающая поверхность, то он также изменяет направление, а часть световой энергии поглощается. Если объект зеркальный и одновременно прозрачный (например, обычное стекло), то будет уже два луча— в этом случае говорят, что луч расщепляется.
Можно сказать, что в результате действия на объекты первичных лучей возникают вторичные лучи. Бесчисленное множество вторичных лучей уходит в свободное пространство, но некоторые из них попадают на другие объекты. Так, многократно отражаясь и преломляясь, отдельные световые лучи приходят в точку наблюдения — глаз человека или оптическую систему камеры. Очевидно, что в точку наблюдения может попасть и часть первичных лучей непосредственно от источников излучения. Таким образом, изображение сцены формируется некоторым множеством световых лучей.
Цвет отдельных точек изображения определяется спектром и интенсивностью первичных лучей источников излучения, а также поглощением световой энергии в объектах, встретившихся на пути соответствующих лучей.
Непосредственная реализация данной лучевой модели формирования изображения представляется затруднительной. Можно попробовать построить алгоритм построения изображения указанным способом. В таком алгоритме необходимо предусмотреть перебор всех первичных лучей и определить те из них, которые попадают в объекты и в камеру. Затем выполнить перебор всех вторичных лучей, и также учесть только те, которые попадают в объекты и в камеру. И так далее. Можно назвать такой метод прямой трассировкой лучей. Практическая ценность такого метода вызывает сомнения. В самом деле, как учитывать бесконечное множество лучей, идущих во все стороны? Очевидно, что полный перебор бесконечного числа лучей в принципе невозможен. Даже если каким-то образом свести это к конечному числу операций (например, разделить всю сферу направлений на угловые секторы и оперировать уже не бесконечно тонкими линиями, а секторами), все равно остается главный недостаток метода — много лишних операций, связанных с расчетом лучей, которые затем не используются. Так, во всяком случае, это представляется в настоящее время.
Метод обратной трассировки лучей позволяет значительно сократить перебор световых лучей. Метод разработан в 80-х годах, основополагающими считаются работы Уиттеда и Кэя [28]. Согласно этому методу отслеживание лучей производится не от источников света, а в обратном направлении — от точки наблюдения. Так учитываются только те лучи, которые вносят вклад в формирование изображения.
Рассмотрим, как можно получить растровое изображение некоторой трехмерной сцены методом обратной трассировки. Предположим, что плоскость проецирования разбита на множество квадратиков— пикселов. Выберем центральную проекцию с центром схода на некотором расстоянии от плоскости проецирования. Проведем прямую линию из центра схода через середину квадратика (пиксела) плоскости проецирования (рис. 4.49). Это будет первичный луч обратной трассировки. Если прямая линия этого луча попадает в один или несколько объектов сцены, то выбираем ближайшую точку пересечения. Для определения цвета пиксела изображения нужно учитывать свойства объекта, а также то, какое световое излучение приходится на соответствующую точку объекта.
Рис. 4.49. Схема обратной трассировки лучей
Если объект зеркальный (хотя бы частично), то строим вторичный луч — луч падения, считая лучом отражения предыдущий, первичный трассируемый луч. Выше мы рассматривали зеркальное отражение и получили формулы для вектора отраженного луча по заданным векторам нормали и луча падения. Но здесь нам известен вектор отраженного луча, а как найти вектор | падающего луча? Для этого можно использовать ту же самую формулу зеркального отражения, но определяя необходимый вектор луча падения как 1 отраженный луч. То есть отражение наоборот.
Для идеального зеркала достаточно затем проследить лишь очередную точку пересечения вторичного луча с некоторым объектом. Что означает термин "идеальное зеркало"? Будем полагать, что у такого зеркала идеально ровная отполированная поверхность, поэтому одному отраженному лучу соответствует только один падающий луч. Зеркало может быть затемненным, то есть поглощать часть световой энергии, но все равно остается правило: один луч падает — один отражается. Можно рассматривать также "неидеальное зеркало". Это будет означать, что поверхность неровная. Направлению отраженного луча будет соответствовать несколько падающих лучей (или наоборот, один падающий луч порождает несколько отраженных лучей), образующих некоторый конус, возможно, несимметричный, с осью вдоль линии падающего луча идеального зеркала. Конус соответствует некоторому закону распределения интенсивностей, простейший из которых описывается моделью Фонга — косинус угла, возведенный в некоторую степень. Неидеальное зеркало резко усложняет трассировку — нужно проследить не один, а множество падающих лучей, учитывать вклад излучения от других видимых из данной точки объектов.
Если объект прозрачный, то необходимо построить новый луч, такой, который при преломлении давал бы предыдущий трассируемый луч. Здесь также можно воспользоваться обратимостью, которая справедлива и для преломления. Для расчета вектора искомого луча можно применить рассмотренные выше формулы для вектора луча преломления, считая, что преломление происходит в обратном направлении (рис. 4.50).
Если объект обладает свойствами диффузного отражения и преломления, то, в общем случае, как и для неидеального зеркала, необходимо трассировать лучи, приходящие от всех имеющихся объектов. Для диффузного отражения интенсивность отраженного света, как известно, пропорциональна косинусу угла между вектором луча от источника света и нормалью. Здесь источником света может выступать любой видимый из данной точки объект, способный передавать световую энергию.
Когда выясняется, что текущий луч обратной трассировки не пересекает какой-либо объект, а уходит в свободное пространство, то на этом трассировка для этого луча заканчивается.
__
зеркального отражения и преломления 1
Обратная трассировка лучей в том виде, в каком мы ее здесь рассмотрели, хоть и сокращает перебор, но не позволяет избавиться от бесконечного числа i анализируемых лучей. В самом деле, данный метод позволяет сразу получить' для каждой точки изображения единственный первичный луч обратной трассировки. Однако вторичных лучей отражения уже может быть бесконечное количество. Так, например, если объект может отражать свет от любого другого объекта, и если эти другие объекты имеют достаточно большие размеры, то какие именно точки излучающих объектов нужно учитывать для построения соответствующих лучей, например, при диффузном отражении? Очевидно, все точки.
При практической реализации метода обратной трассировки вводят ограничения. Некоторые их них необходимы, чтобы можно было в принципе решить задачу синтеза изображения, а некоторые ограничения позволяют значительно повысить быстродействие трассировки. Рассмотрим примеры таких ограничений [28, 32].
1. Среди всех типов объектов выделим некоторые, которые назовем источниками света. Источники света могут только излучать свет, но не могут его отражать или преломлять. Будем рассматривать только точечные источники света.
2. Свойства отражающих поверхностей описываются суммой двух компонент — диффузной и зеркальной.
|3. В свою очередь, зеркальность также описывается двумя составляющими. Первая {reflection) учитывает отражение от других объектов, не являющихся источниками света. Строится только один зеркально отраженный луч г для дальнейшей трассировки. Вторая компонента {specular) означает световые блики от источников света. Для этого направляются лучи на все источники света и определяются углы, образуемые этими лучами с зеркально отраженным лучом обратной трассировки (г). При зеркальном отражении цвет точки поверхности определяется цветом того, что отражается. В простейшем случае зеркало не имеет собственного цвета поверхности.
\ 4. При диффузном отражении учитываются только лучи от источников света. Лучи от зеркально отражающих поверхностей игнорируются. Если луч, направленный на данный источник света, закрывается другим объектом, значит, данная точка объекта находится в тени. При диффузном отражении цвет освещенной точки поверхности определяется собственным цветом поверхности и цветом источников света.
5. Для прозрачных (transparent) объектов обычно не учитывается зависимость коэффициента преломления от длины волны. Иногда прозрачность вообще моделируют без преломления, то есть направление преломленного луча t совпадает с направлением падающего луча.
6. Для учета освещенности объектов светом, рассеиваемым другими объектами, вводится фоновая составляющая (ambient).
7. Для завершения трассировки вводят некоторое пороговое значение освещенности, которое уже не должно вносить вклад в результирующий цвет, либо ограничивают количество итераций.
Согласно модели Уиттеда цвет некоторой точки объекта определяется суммарной интенсивностью
где X — длина волны, С(Х) — заданный исходный цвет точки объекта, Ка, Kd, Ks, Kr и Кt— коэффициенты, учитывающие свойства конкретного объекта параметрами фоновой подсветки, диффузного рассеивания, зеркальности, отражения и прозрачности.
1а — интенсивность фоновой подсветки,
1d— интенсивность, учитываемая для диффузного рассеивания,
1s — интенсивность, учитываемая для зеркальности,
1r — интенсивность излучения, приходящего по отраженному лучу,
1t— интенсивность излучения, приходящего по преломленному лучу.
Интенсивность фоновой подсветки (1а) для некоторого объекта обычно константа. Запишем формулы для остальных интенсивностей. Для диффузного отражения:
где 1i (λ) — интенсивность излучения i-го источника света, θi — угол между нормалью к поверхности объекта и направлением на i-й источник света.
Для зеркальности:
где р — показатель степени от единицы до нескольких сотен (согласно модели Фонга), аi— угол между отраженным лучам (обратной трассировки) и направлением на i-й источник света.
Интенсивности излучений, приходящих по отраженному лучу (Ir), а также по преломленному лучу (1t), умножают на коэффициент, учитывающий ослабление интенсивности в зависимости от расстояния, пройденного лучом. Такой коэффициент записывается в виде е-βd , где d — пройденное расстояние, β — параметр ослабления, учитывающий свойства среды, в которой распространяется луч.
На рис. 4.51 показан пример изображения трехмерной сцены.