Главная » Просмотр файлов » 8_Теория алгоритмов.

8_Теория алгоритмов. (1019129), страница 4

Файл №1019129 8_Теория алгоритмов. (Мацнев А.П. - Математическая логика и теория алгоритмов - 2004) 4 страница8_Теория алгоритмов. (1019129) страница 42017-07-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Сводя три результата воедино, имеем следующую таблицу:

Умножение

Сложение

Стандартный алгоритм

Алгоритм Виноградова

Алгоритм Штрассена

Все рассмотренные алгоритмы имеют полиномиальную сложность. Самым времяемким был алгоритм умножения матриц, его сложность . Главное, однако то, что мы могли найти такое решение задач за разумный промежуток времени. Все эти задачи относятся к классу Р – классу задач полиномиальной сложности. Такие задачи называются также практически разрешимыми.

Алгоритмы недетерминированной полиномиальной сложности (класс NP задач).

Кроме практически разрешимых задач, относящихся к классу p – классу задач полиномиальной сложности, существует и другой класс задач: они практически неразрушимы и мы не знаем алгоритмов, способных решить их за разумное время. Эти задачи образуют класс NP – недетерминированной полиномиальной сложности.

Отметим только, что сложность всех известных детерминированных алгоритмов, решающих эти задачи, либо экспоненциально, либо факториальна. Сложность некоторых из них равна , где N – количество входных данных. В этом случае при добавлении к списку входных данных одного элемента время работы алгоритма удваивается. Если для решения такой задачи на входе из 10 элементов алгоритму требовалось 1024 операций, то на входе из 11 элементов число операций составит уже 2048. Это значительное возрастание времени при небольшом удлинении входа.

Термин «недетерминированные полиномиальные» характеризующие задачи из класса NP, объясняется следующим двухшаговым подходом к их решению. На первом шаге имеется недетерминированный алгоритм, генерирующий возможное решение такой задачи – что-то вроде попытки указать решение; иногда такая попытка оказывается успешной, и мы получаем оптимальный или близкий к оптимальному ответу, чаще нет (ответ далек от оптимального). На втором шаге проверяется, действительно ли ответ, полученный на 1 шаге, является решением исходной задачи. Каждый из этих шагов по отдельности требует полиномиального времени. Проблема, однако, в том, что мы не знаем, сколько раз нам придется повторить оба эти шага, чтобы получить искомое решение. Хотя оба шага и полиномиальны, число обращений к ним может быть экспоненциальным или факториальным.

К классу NP относится задача о коммивояжере. Нам задан набор городов и «стоимость» путешествия между любыми двумя из них. Нужно определить такой порядок, в котором следует посетить все города (по одному разу) и вернуться в исходный город, чтобы общая стоимость путешествия оказалась минимальной. Эту задачу можно применить, например, для определения порядка эффективного сбора мусора из баков на улицах города или выбора кратчайшего пути распространения информации по всем узлам компьютерной сети. Восемь городов можно упорядочить 40 320 возможными способами, а для десяти городов это число возрастает уже до 3 628 800. Поиск кратчайшего пути требует перебора всех этих возможностей. Предположим, что у нас есть алгоритм, способный подсчитать стоимость путешествия через 15 городов в указанном порядке. Если за секунду такой алгоритм способен пропустить через себя 100 вариантов, то ему потребуется больше четырех веков, чтобы исследовать все возможности и найти кратчайший путь. Даже если в нашем распоряжении имеется 400 компьютеров, все равно у них уйдет на это год, а ведь мы имеем дело лишь с 15 городами. Для 20 городов миллиард компьютеров должен будет работать параллельно в течение девяти месяцев, чтобы найти кратчайший путь. Ясно, что быстрее и дешевле путешествовать хоть как-нибудь, чем ждать, пока компьютеры выдадут оптимальное решение.

Можно ли найти кратчайший путь, не просматривая их все? До сих пор никому не удалось придумать алгоритм, который не занимается, по существу, просмотром всех путей. Когда число городов невелико, задача решается быстро, однако это не означает, что так будет всегда, а нас как раз интересует решение общей задачи.

Задача о коммивояжере, конечно, очень похожа на задачи про графы. Каждый город можно представить вершиной графа, наличие пути между двумя городами - ребром, стоимость путешествия между ними — весом этого ребра. Отсюда можно сделать вывод, что алгоритм поиска кратчайшего пути решает и задачу коммивояжера, однако это не так. Какие два условия задачи о коммивояжере отличают ее от задачи о кратчайшем пути? Во-первых, мы должны посетить все города, а алгоритм поиска кратчайшего пути дает лишь путь между двумя заданными городами. Если выбрать путь из кратчайших кусков, выдаваемых алгоритмом поиска кратчайших путей, то он будет проходить через некоторые города по нескольку раз. Второе отличие состоит в требовании возвращения в исходную точку, которое отсутствует в поиске кратчайшего пути.

Наше краткое обсуждение того, насколько велико число возможных упорядочиваний вершин, должно было убедить Вас в том, что детерминированный алгоритм, сравнивающий все возможные способы упо­рядочивания. работает чересчур долго. Чтобы показать, что эта за­дача относится к классу NР, нам необходимо понять, как ее можно ре­шить посредством описанной выше двухшаговой процедуры. В задаче о коммивояжере на первом шаге случайным образом генерируется неко­торое упорядочивание городов. Поскольку это недетерминированный процесс, каждый раз будет получаться новый порядок. Очевидно, что процесс генерации можно реализовать за полиномиальное время: мы можем хранить список городов, генерировать случайный номер, выби­рать из списка город с этим именем и удалять его из списка, чтобы он не появился второй раз. Такая процедура выполняется за 0(N) опе­раций, где N — число городов. На втором шаге происходит подсчет стоимости путешествия по городам в указанном порядке. Для этого нам нужно просто просуммировать стоимости путешествия между по­следовательными парами городов в списке, что также требует 0(N) операций. Оба шага полиномиальны, поэтому задача о коммивояжере лежит в классе NP. Времяемкой делает ее именно необходимое число итераций этой процедуры.

Здесь следует отметить, что такую двухшаговую процедуру можно было применить к любой из рассматривавшихся нами ранее задач. На­пример, сортировку списка можно выполнять, генерируя произвольный порядок элементов исходного списка и проверяя, не является ли этот порядок возрастающим. Не относит ли это рассуждение задачу сор­тировки к классу NP? Конечно, относит. Разница между классом Р и классом NP в том, что в первом случае у нас имеется детерминирован­ный алгоритм, решающий задачу за полиномиальное время, а во втором мы такого алгоритма незнаем.

Сведение задачи к другой задаче

Один из способов решения задач состоит в том, чтобы свести, или редуцировать, одну задачу к другой. Тогда алгоритм решения второй задачи можно преобразовать таким образом, чтобы он решал первую. Если преобразование выполняется за полиномиальное время и вторая задача решается за полиномиальное время, то и наша новая задача так­же решается за полиномиальное время.

Поясним наше рассуждение примером. Пусть первая задача состоит и том, чтобы вернуть значение «да» в случае, если одна из данных булевских поименных имеет значение «истина», и вернуть «нет» в противоположном случае. Вторая задача заключается в том, чтобы найти максимальное значение в списке целых чисел. Каждая из них допускает простое ясное решение, но предположим на минуту, что мы знаем решение задачи о списке максимума, а задачу про булевские переменные решать не умеем. Мы хотим свести задачу о булевских переменных к задаче о максимуме целых чисел. Напишем алгоритм преобразования набора значений булевских переменных в список целых чисел, который значению «ложь» сопоставляет число 0, а значению «истина»— число 1. Затем воспользуемся алгоритмом поиска максимального элемента в списке. По тому, как составлялся список, заключаем, что этот максимальный элемент может быть либо нулем, либо единицей. Такой ответ можно преобразовать в ответ в задаче о булевских переменных, возвращая «да», если максимальное значение равно 1, и «нет», если оно равно 0.

Мы видели в главе 1, что поиск максимального значения выполняется за линейное время, а редукция первой задачи ко второй тоже требует линейного времени, поэтому задачу о булевских переменных тоже можно решить за линейное время.

В следующем разделе мы воспользуемся техникой сведения, чтобы кое-что узнать о NP задачах. Однако редукция NP задач может оказаться гораздо более сложной.

8.7 Понятие сложности вычислений. NP- полные задачи.

NP-полные задачи

При обсуждении класса NP следует иметь в виду, что наше мнение, согласно которому их решение требует большого времени, основано на том, что мы просто не нашли эффективных алгоритмов их решения. Может быть, посмотрев на задачу коммивояжера с другой точки зрения, мы смогли бы разработать полиномиальный алгоритм ее решения. То же самое можно сказать и про другие задачи, которые мы будем рассматривать в следующем параграфе.

Термин NP-полная относится к самым сложным задачам в классе NP. Эти задачи выделены тем, что если нам все-таки удастся найти полиномиальный алгоритм решения какой-либо из них, то это будет означать, что все задачи класса NP допускают полиномиальные алгоритмы решения.

Мы показываем, что задача является NP-полной, указывая способ выведения к ней всех остальных задач класса NP. На практике эта деятельность выглядит не столь уж устрашающе - нет необходимости осуществлять редукцию для каждой NP задачи. Вместо этого для того, чтобы доказать NP-полноту некоторой NP задачи А, достаточно свести к ней какую-нибудь NP-полную задачу В. Редуцировав задачу В к задаче А, мы показываем, что и любая NP задача может быть сведена к А за два шага, первый из которых ее редукция к В.

В предыдущем разделе мы выполняли редукцию полиномиального алгоритма. Посмотрим теперь на редукцию алгоритма, решающего NP задачу. Нам понадобится процедура, которая преобразует все со­ставные части задачи в эквивалентные составные части другой задачи. Такое преобразование должно сохранять информацию: всякий раз, ко­гда решение первой задачи дает положительный ответ, такой же ответ должен быть и во второй задаче, и наоборот.

Гамильтоновым путем в графе называется путь, проходящий через каждую вершину в точности один раз. Если при этом путь возвраща­ется в исходную вершину, то он называется гамильтоновым циклом. Граф, в котором есть гамильтонов путь или цикл, не обязательно явля­ется полным. Задача о поиске гамильтонова цикла следующим образом сводится к задаче о коммивояжере. Каждая вершина графа — это го­род. Стоимость пути вдоль каждого ребра графа положим равной 1. Стоимость пути между двумя городами, не соединенными ребром, по­ложим равной 2. А теперь решим соответствующую задачу о комми­вояжере. Если в графе есть гамильтонов цикл, то алгоритм решения задачи о коммивояжере найдет циклический путь, состоящий из ребер веса 1. Если же гамильтонова цикла нет, то в найденном пути будет по крайней мере одно ребро веса 2. Если в графе N вершин, то в нем есть гамильтонов цикл, если длина найденного пути равна N, и такого цикла нет, если длина найденного пути больше N.

В 1971 году Кук доказал NP-полноту обсуждаемой в следующем пара­графе задачи о конъюнктивной нормальной форме. NP-полнота большого числа задач была доказана путем редукции к ним задачи о конъюнктив­ной нормальной форме. В книге Гэри и Джонсона, опубликованной в 1979 году, приведены сотни задач, NP-полнота которых доказана.

Характеристики

Тип файла
Документ
Размер
481 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее