Главная » Просмотр файлов » В.А. Столярчук. Анализ результатов расчетов в САЕ-системах (учебное пособие)

В.А. Столярчук. Анализ результатов расчетов в САЕ-системах (учебное пособие) (1013886), страница 7

Файл №1013886 В.А. Столярчук. Анализ результатов расчетов в САЕ-системах (учебное пособие) (В.А. Столярчук. Анализ результатов расчетов в САЕ-системах (учебное пособие)) 7 страницаВ.А. Столярчук. Анализ результатов расчетов в САЕ-системах (учебное пособие) (1013886) страница 72017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

не могут, вообще говоря, все обратиться в нуль, и в этом случае

также не может обратиться в нуль. Н. к. м. предписывает в качестве оценок выбрать такие значения Xj, которые минимизируют сумму S. В тех исключительных случаях, когда условные уравнения совместны и, значит, обладают решением, это решение совпадает с оценками, полученными согласно Н. к. м.

Сумма квадратов S представляет собой квадратичный многочлен относительно переменных Xj; этот многочлен достигает минимума при таких значениях X1, X2,..., Хm, при которых обращаются в нуль все первые частные производные:

Отсюда следует, что оценки Xj, полученные согласно Н. к. м., должны удовлетворять системе так называемых нормальных уравнений, которая в обозначениях, предложенных Гауссом, имеет вид:

где

Оценки Xj, получающиеся в результате решения системы нормальных уравнений, лишены систематических ошибок (Exj = xj); дисперсии Dxj; величин Xj равны kdjj/d, где d — определитель системы (5), а djj — минор, соответствующий диагональному элементу [раjaj] (иными словами, djj/d — вес оценки Xj). Если множитель пропорциональности k (k называется дисперсией на единицу веса) заранее неизвестен, то для его оценки, а также для оценки дисперсии Dxj служат формулы:

k » S/(n - m) и Dxj » s2j = Sdjj/d (n - m)

(S — минимальное значение исходной суммы квадратов). При некоторых общих предположениях можно показать, что если количество наблюдений n достаточно велико, то абсолютная погрешность приближённого равенства xi » Xj меньше tsj с вероятностью, близкой к значению интеграла (1). Если случайные ошибки наблюдений di подчиняются нормальному распределению, то все отношения (Xj - xj)/sj распределены по закону Стьюдента с n - m степенями свободы [точная оценка абсолютной погрешности приближённого равенства производится здесь с помощью интеграла (2) так же, как в случае одного неизвестного]. Кроме того, минимальное значение суммы S в вероятностном смысле не зависит от X1, X2,..., Xm и поэтому приближённые значения дисперсий оценок Dxj » s2j не зависят от самих оценок Xj.

Один из наиболее типичных случаев применения Н. к. м. — «выравнивание» таких результатов наблюдений Yi, для которых в уравнениях (3) aij = aj (ti), где aj (t) — известные функции некоторого параметра t (если t — время, то t1, t2,... — те моменты времени, в которые производились наблюдения). Особенно часто встречается в приложениях случай так называемой параболической интерполяции, когда aj (t) — многочлены [например, a1(t) = 1, a2(t) = t, a3(t) = t2,... и т.д.]; если t2t1 = t3t2 =... = tntn-1, a наблюдения равноточные, то для вычисления оценок Xj можно воспользоваться таблицами ортогональных многочленов, имеющимися во многих руководствах по современной вычислительной математике. Другой важный для приложения случай — так называемая гармоническая интерполяция, когда в качестве aj (t) выбирают тригонометрические функции [например, aj (t) = cos (j - 1) t, j = 1, 2,..., m].

Пример. Для оценки точности одного из методов химического анализа этим методом определялась концентрация CaO в десяти эталонных пробах заранее известного состава. Результаты равноточных наблюдений указаны в таблице (i — номер эксперимента, ti — истинная концентрация CaO, Ti — концентрация CaO. определённая в результате химического анализа, Yi = Ti - ti — ошибка химического анализа):

i

1

2

3

4

5

6

7

8

9

10

ti

4

8

12,5

16

20

25

31

36

40

40

Yi

- 0,3

- 0,2

- 0,4

- 0,4

- 0,2

- 0,5

+ 0,1

- 0,5

-0,6

-0,5

Если результаты химического анализа не имеют систематических ошибок, то Eyi = 0. Если же такие ошибки имеются, то в первом приближении их можно представить в виде: Eyi = a + bti (a называется постоянной ошибкой, а bti — методической ошибкой) или, что то же самое,

где

Для отыскания оценок a и b достаточно оценить коэффициенты

Условные уравнения в данном случае имеют вид:

поэтому ai1 = 1, ai2 = ti - t (согласно предположению о равноточности наблюдений, все pi = 1). Так как

то система нормальных уравнений записывается особенно просто:

[a1a1] X1 = [Ya1]; [a2a2] X2 = [Ya2],

где

Дисперсии компонент решения этой системы суть

где k — неизвестная дисперсия на единицу веса (в данном случае k — дисперсия любой из величин Yi). Так как в этом примере компоненты решения принимают значения X1 = -0,35 и X2 = -0,00524, то

Dx1 » s12 = 0,00427,

Dx2 » s22 = 0,0000272,

s1 = 0,065, s2 = 0,00522.

Если случайные ошибки наблюдений подчиняются нормальному распределению, то отношения |Xjxjl/sj (j = 1, 2) распределены по закону Стьюдента. В частности, если результаты наблюдений лишены систематических ошибок, то x1 = x2 = 0 и, значит, закону Стьюдента должны подчиняться отношения |X1|/s1 и |X2|/s2. С помощью таблиц распределения Стьюдента с nm = 8 степенями свободы можно убедиться, что если действительно x1 = x2 = 0, то с вероятностью 0,999 каждое из этих отношений не должно превосходить 5,04 и с вероятностью 0,95 не должно превосходить 2,31. В данном случае |X1|/s1 = 5,38 > 5,04, поэтому гипотезу отсутствия систематических ошибок целесообразно отвергнуть; в то же время следует признать, что гипотеза об отсутствии методической ошибки (x2 = 0) не противоречит результатам наблюдений, так как |X2|/s2 = 1,004 < 2,31. Т. о., можно заключить, что для определения t по результату наблюдения Т целесообразно пользоваться приближённой формулой t = Т + 0,35.

Во многих практически важных случаях (и в частности, при оценке сложных нелинейных связей) количество неизвестных параметров бывает весьма большим и поэтому реализация Н. к. м. оказывается эффективной лишь при использовании современной вычислительной техники.

Применение регрессионного анализа для обработки результатов наблюдений или вычислений позволяет получить оценку влияния переменных, рассматриваемых в качестве аргументов (независимых переменных) на переменную, которая считается зависимой от первых.

Одной из составляющих 1-ой части курсовой работы 8-го семестра является освоение методов регрессионного анализа в процессе разработки математического описания исследуемого процесса или явления. Курсовая работа предусматривает обработку экспериментальных данных и поиск наиболее удовлетворительной гипотезы взаимосвязи между функцией и аргументами.

В качестве таких гипотез рассматриваются линейная и нелинейная регрессионные модели, каждая из которых может быть парной (только две переменных (функция и аргумент) или множественной (одна функция и несколько аргументов).

Относительно закона изменения независимых переменных x не делается никаких ограничений

5.2.2 Линейная парная регрессия

Пусть, например, независимой {Y}. положим переменную {X}. Тогда го­во­рят, что переменная Y связана с {X} некоторой зависимостью, которую без ог­ра­ничения общности можно представить: Y = F(Х), где F - некоторый не­из­вест­ный оператор, связывающий множество Х со множеством Y. Для прос­то­ты можно считать преобразование взаимно однозначным, т.е. X = F(Y), хотя на практике это выполняется далеко не всегда.

Теперь математически задача сводится к построению явного вида опе­ра­то­ра F и затем его уточнению. Методов решения указанной задачи су­щес­тву­ет достаточно много. Рассмотрим методы линейного регрессионного анализа.

Одним из самых простых операторов F является линейный, определяющий линейную зависимость вида Y = АХ + В. Для начала положим В = 0 и определим связи между переменными Х и Y, вычислив параметр А.

метод выбранных точек



Проведем прямую как можно ближе к нанесенным точкам (рис. 1) и вы­бе­рем на этой прямой про­из­воль­ную точку М(Х, Y).



Рис. 1. Множество экспери­мен­таль­ных точек {X} и {Y}, нанесенных на плоскость.

М(X,Y) - выбранная точка для регрессии.

Тогда параметр А определится из отношения А=Y/X. Преимущество этого ме­тода перед всеми состоит в его наглядности. Но заметим, что значения А мо­гут колебаться довольно значительно, так как прямая строится про­из­воль­но и в выборе точек, через которые проводится прямая, нет однозначности.

метод средних

Этот метод дает лучшие результаты по сравнению с методом выбранных то­чек. Если предположим, что зависимость построена, тогда yi = aхi даст при­бли­женные значения yi. Определим параметр a из условия минимума средней ошибки

.

Перепишем последнее выражение в виде

,

откуда получаем выражение для .

метод наименьших квадратов

Этот метод дает еще более точные результаты по сравнению с двумя рас­смот­ренными выше. В этом методе параметр а определяется из условия ми­ни­мальной суммы квадратов отклонений табличных значений уi от полу­чен­ных уi* : . Условие минимума F, как известно, да­ет равенство нулю ее первой про­из­вод­ной, т.е. . Продиф­ферен­ци­ро­вав F по а, получим , откуда находим .

Каждый из приведенных выше методов является более точным (по по­ряд­ку возрастания). Поэтому рекомендуется сначала воспользоваться методом вы­б­ранных точек, а затем - одним из двух оставшихся (для уточнения па­ра­мет­ра а).

Характеристики

Тип файла
Документ
Размер
368,84 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее