В.А. Столярчук. Анализ результатов расчетов в САЕ-системах (учебное пособие) (1013886), страница 6
Текст из файла (страница 6)
Регрессионный анализ является одним из наиболее распространённых методов обработки результатов наблюдений при изучении зависимостей в физике, биологии, экономике, технике и др. областях. На модели регрессионного анализа основаны такие разделы математической статистики, как дисперсионный анализ и планирование эксперимента; модели регрессионного анализа широко используются в многомерном статистическом анализе .
4. Метод наименьших квадратов.
Метод Наименьших Квадратов, один из методов теории ошибок для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Метод наименьших квадратов применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. Метод наименьших квадратов предложен К. Гауссом (1794—95) и А. Лежандром (1805—06). Первоначально метод наименьших квадратов использовался для обработки результатов астрономических и геодезических наблюдений. Строгое математическое обоснование и установление границ содержательной применимости метода наименьших квадратов даны А. А. Марковым (старшим) и А. Н. Колмогоровым. Ныне метод наименьших квадратов представляет собой один из важнейших разделов математической статистики и широко используется для статистических выводов в различных областях науки и техники.
Сущность обоснования метода наименьших квадратов (по Гауссу) заключается в допущении, что «убыток» от замены точного (неизвестного) значения физической величины и её приближённым значением X, вычисленным по результатам наблюдений, пропорционален квадрату ошибки: (X - m)2. В этих условиях оптимальной оценкой естественно признать такую лишённую систематической ошибки величину X, для которой среднее значение «убытка» минимально. Именно это требование и составляет основу метода наименьших квадратов. В общем случае отыскание оптимальной в смысле метода наименьших квадратов оценки Х — задача весьма сложная, поэтому практически эту задачу сужают и в качестве Х выбирают линейную функцию от результатов наблюдений, лишённую систематической ошибки, и такую, для которой среднее значение «убытка» минимально в классе всех линейных функций. Если случайные ошибки наблюдений подчиняются нормальному распределению и оцениваемая величина m зависит от средних значений результатов наблюдений линейно (случай, весьма часто встречающийся в приложениях Н. к. м.), то решение этой задачи будет одновременно являться и решением общей задачи. При этом оптимальная оценка Х также подчиняется нормальному распределению со средним значением m и, следовательно, плотность вероятности случайной величины Х
при х = Х достигает максимума в точке m = Х (это свойство и выражает точное содержание распространённого в теории ошибок утверждения «оценка X, вычисленная согласно методу наименьших квадратов — наиболее вероятное значение неизвестного параметра m»).
Случай одного неизвестного.
Пусть для оценки значения неизвестной величины m произведено n независимых наблюдений, давших результаты Y1, Y2,..., Yn, т. е. Y1 = m + d1, Y2 = m + d2,..., Yn = m + dn, где d1, d2,..., dn — случайные ошибки (по определению, принятому в классической теории ошибок, случайные ошибки — независимые случайные величины с нулевым математическим ожиданием: Еdi = 0; если же Edi ¹ 0, то Еdi, называются систематическими ошибками). Согласно методу наименьших квадратов в качестве оценки величины m принимают такое X, для которого будет наименьшей сумма квадратов (отсюда и само название метода):
( 1 )
где pi = k/si2 и si2 = Ddi = Edi2 (коэффициент k > 0 можно выбирать произвольно). Величину pi называют весом, a si — квадратичным отклонением измерения с номером i. В частности, если все измерения равноточны, то s1 = s2 =... = sn, и в этом случае можно положить p1 = p2 =... = pn = 1; если же каждое Yi, — арифметическое среднее из ni, равноточных измерений, то полагают pi = ni.
Сумма S (X) будет наименьшей, если в качестве Х выбрать взвешенное среднее:
Оценка величины m лишена систематической ошибки, имеет вес Р и дисперсию
В частности, если все измерения равноточны, то Y — арифметическое среднее результатов измерений:
При некоторых общих предположениях можно показать, что если количество наблюдений n достаточно велико, то распределение оценки мало отличается от нормального с математическим ожиданием m и дисперсией k/P. В этом случае абсолютная погрешность приближённого равенства
меньше
с вероятностью, близкой к значению интеграла
[напр., I (1,96) = 0,950; I (2,58) = 0,990; I (3,00) = 0,997].
Если веса измерений pi заданы, а множитель k до наблюдений остаётся неопределённым, то этот множитель и дисперсия оценки могут быть приближённо оценены по формулам:
и
(обе оценки лишены систематических ошибок).
В том практически важном случае, когда ошибки di подчиняются нормальному распределению, можно найти точное значение вероятности, с которой абсолютная погрешность приближённого равенства
окажется меньше ts (t — произвольное положительное число). Эту вероятность, как функцию от t, называют функцией распределения Стьюдента с n - 1 степенями свободы и вычисляют по формуле
где постоянная Cn-1 выбрана таким образом, чтобы выполнялось условие: In-1(¥) = 1. При больших n формулу (2) можно заменить формулой (1). Однако применение формулы (1) при небольших n привело бы к грубым ошибкам. Так, например, согласно (1), значению I = 0,99 соответствует t = 2,58; истинные значения t, определяемые при малых n как решения соответствующих уравнений ln-1(t) = 0,99, приведены в таблице:
n | 2 | 3 | 4 | 5 | 10 | 20 | 30 |
t | 63,66 | 9,92 | 5,84 | 4,60 | 3,25 | 2,86 | 2,76 |
Пример. Для определения массы некоторого тела произведено 10 независимых равноточных взвешиваний, давших результаты Yi (в г):
Yi | 18,41 | 18,42 | 18,43 | 18,44 | 18,45 | 18,46 |
ni | 1 | 3 | 3 | 1 | 1 | 1 |
(здесь ni — число случаев, в которых наблюдался вес Yi, причём n = Sni, = 10). Так как все взвешивания равноточные, то следует положить pi = ni и в качестве оценки для неизвестного веса m, выбрать величину
Задавая, например, I9 = 0,95, по таблицам распределения Стьюдента с девятью степенями свободы можно найти, что t = 2,262, и поэтому в качестве предельной абсолютной погрешности приближённого равенства m » 18,431 следует принять величину
Т. о. 18,420 < m < 18,442.
Случай нескольких неизвестных (линейные связи). Пусть n результатов измерений Y1, Y2,..., Yn связаны с m неизвестными величинами x1, x2,..., хm (m < n) независимыми линейными отношениями
где aij — известные коэффициенты, а di — независимые случайные ошибки измерений. Требуется оценить неизвестные величины xj (эту задачу можно рассматривать как обобщение предыдущей, в которой m = x1 и m = ai1 = 1; i = 1,2,..., n).
Так как Еdi = 0, то средние значения результатов измерений yi, = Eyi. связаны с неизвестными величинами x1, x2,..., хm линейными уравнениями (линейные связи):
Следовательно, искомые величины xj представляют собой решение системы (4), уравнения которой предполагаются совместными. Точные значения измеряемых величин yi и случайные ошибки di обычно неизвестны, поэтому вместо систем (3) и (4) принято записывать так называемые условные уравнения
Согласно Н. к. м., качестве оценок для неизвестных xj применяют такие величины Xj, для которых сумма квадратов отклонений
будет наименьшей (как и в предыдущем случае, pi — вес измерения Yi, — величина, обратно пропорциональная дисперсии случайной ошибки di). Условные уравнения, как правило, несовместны, т. е. при любых значениях Xj разности