rpd000002109 (1010482)
Текст из файла
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Московский авиационный институт
(национальный исследовательский университет)
УТВЕРЖДАЮ
Проректор по учебной работе
______________Куприков М.Ю.
“____“ ___________20__
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (000002109)
Численные методы
(указывается наименование дисциплины по учебному плану)
Направление подготовки | Прикладная математика | |||||
Квалификация (степень) выпускника | Бакалавр | |||||
Профиль подготовки | 231300.Б3, 231300.Б4, 231300.Б2, 231300.Б5 | |||||
Форма обучения | очная | |||||
(очная, очно-заочная и др.) | ||||||
Выпускающая кафедра | 803, 804, 802, 805 | |||||
Обеспечивающая кафедра | 806 | |||||
Кафедра-разработчик рабочей программы | 806 | |||||
Семестр | Трудоем-кость, час. | Лек-ций, час. | Практич. занятий, час. | Лаборат. работ, час. | СРС, час. | Экзаменов, час. | Форма промежуточного контроля |
6 | 108 | 34 | 0 | 16 | 58 | 0 | Р |
Итого | 108 | 34 | 0 | 16 | 58 | 0 |
Москва
2011 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Разделы рабочей программы
-
Цели освоения дисциплины
-
Структура и содержание дисциплины
-
Учебно-методическое и информационное обеспечение дисциплины
-
Материально-техническое обеспечение дисциплины
Приложения к рабочей программе дисциплины
Приложение 1. Аннотация рабочей программы
Приложение 2. Cодержание учебных занятий
Приложение 3. Прикрепленные файлы
Программа составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки 231300 Прикладная математика
по профилям:
231300.Б3 Математическое моделирование динамических систем
231300.Б4 Математическая экономика
231300.Б2 Математическое и компьютерное моделирование в механике
231300.Б5 Математическое и программное обеспечение систем обработки информации и управления
Авторы программы :
Северина Н.С. | _________________________ |
Заведующий обеспечивающей кафедрой 806 | _________________________ |
Программа одобрена:
Заведующий выпускающей кафедрой 803 _________________________ | Декан выпускающего факультета 8 _________________________ |
Заведующий выпускающей кафедрой 804 _________________________ | |
Заведующий выпускающей кафедрой 802 _________________________ | |
Заведующий выпускающей кафедрой 805 _________________________ | |
-
ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
Целью освоения дисциплины Численные методы является достижение следующих результатов образования (РО):
N | Шифр | Результат освоения |
1 | У-22 | Уметь пользоваться современным программным обеспечением - пакетами MATLAB и Mathcad |
2 | В-16 | Владеть навыками формализации прикладных задач; способностью выбирать конкретные методы анализа и синтеза для ее решения |
3 | Умения: практические – разработка алгоритмов решения задач. | |
4 | Навыками программирования в современных средах разработки программных приложений; | |
5 | Владеть элементами математического и функционального анализа |
Перечисленные РО являются основой для формирования следующих компетенций: (в соответствии с ФГОС ВПО и требованиями к результатам освоения основной образовательной программы (ООП))
N | Шифр | Компетенция |
1 | ОК-14 | Способен оформлять, представлять и докладывать результаты выполненной работы |
2 | ПК-3 | Способен использовать стандартные пакеты прикладных программ для решения практических задач на ЭВМ, отлаживать, тестировать прикладное программное обеспечение |
-
СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ
Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы), 108 часа(ов).
Модуль | Раздел | Лекции | Практич. занятия | Лаборат. работы | СРС | Всего часов | Всего с экзаменами и курсовыми |
Численные методы | Вычислительные методы алгебры | 8 | 0 | 4 | 8 | 20 | 108 |
Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 4 | 0 | 4 | 6 | 14 | ||
Теория приближения функций и её приложения | 6 | 0 | 4 | 10 | 20 | ||
Численные методы решения задач для ОДУ | 8 | 0 | 4 | 12 | 24 | ||
Основы численных методов решения дифференциальных уравнений с частными производными и интегральных уравнений | 8 | 0 | 0 | 12 | 20 | ||
Всего | 34 | 0 | 16 | 48 | 98 | 108 |
-
Содержание (дидактика) дисциплины
В разделе приводится полный перечень дидактических единиц, подлежащих усвоению при изучении данной дисциплины.
1. Численные методы решения систем линейных алгебраических уравнений (СЛАУ)
- 1.1. Норма матрицы и вектора. Согласованность норм. Понятие обусловленности СЛАУ.
- 1.2. Метод Гаусса решения СЛАУ. LU – разложение матриц. Метод Гаусса с выбором ведущего элемента. Матрица перестановок.
- 1.3. Вычисление обратной матрицы с использованием метода Гаусса.
- 1.4. Метод прогонки решения СЛАУ.
- 1.5. Метод простых итераций решения СЛАУ. Достаточное условие сходимости. Погрешность решения.
- 1.6. Метод Зейделя решения СЛАУ.
- 1.7. Собственные значения и собственные векторы матриц, подобные преобразования для произвольных и симметричных матриц.
- 1.8. Оценка спектрального радиуса степенным методом.
- 1.9. Метод вращения нахождения собственных значений и собственных векторов матриц.
- 1.10. QR-алгоритм нахождения собственных значений матриц.
2. Численные методы решения нелинейных уравнений и систем
- 2.1. Нелинейные уравнения. Основные этапы нахождения корней. Метод половинного деления, погрешность.
- 2.2. Метод простых итераций решения нелинейных уравнений, погрешность, геометрический смысл. Достаточное условие сходимости.
- 2.3. Метод Ньютона решения нелинейных уравнений, погрешность, геометрический смысл.
- 2.4. Метод секущих решения нелинейных уравнений, погрешность, геометрический смысл.
- 2.5. Метод простых итераций и метод Зейделя решения систем нелинейных уравнений.
- 2.6. Метод Ньютона решения систем нелинейных уравнений. Модификации метода Ньютона.
3. Методы приближения функций
- 3.1. Общая характеристика задач и методов приближения таблично заданных функций. Единственность интерполяционного полинома.
- 3.2. Интерполяционные полиномы в форме Лагранжа и форме Ньютона. Погрешность.
- 3.3. Интерполяция сплайнами. Построение кубических сплайнов.
- 3.4. Тригонометрическая интерполяция.
- 3.5. Процедура Рунге-Ромберга оценки погрешности численного интегрирования.
- 3.6. Численное интегрирование. Формула Симпсона. Погрешность.
- 3.7. Метод наименьших квадратов.
- 3.8. Численное дифференцирование. Основные формулы. Оценка погрешности.
- 3.9. Численное интегрирование. Формулы прямоугольников и трапеций. Погрешности.
4. Численные методы решения начальных и краевых задач для обыкновенных дифференциальных уравнений (ОДУ) и систем ОДУ
- 4.1. Постановка задачи Коши для ОДУ и систем ОДУ. Метод Эйлера.
- 4.2. Модификации метода Эйлера решения задачи Коши для ОДУ и систем ОДУ.
- 4.3. Семейство методов Рунге-Кутта. Метод Рунге-Кутта IV порядка.
- 4.4. Многошаговые методы. Семейство методов Адамса решения задачи Коши для ОДУ.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.