rpd000012680 (1010129)
Текст из файла
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Московский авиационный институт
(национальный исследовательский университет)
УТВЕРЖДАЮ
Проректор по учебной работе
______________Куприков М.Ю.
“____“ ___________20__
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (000012680)
Дискретная математика
(указывается наименование дисциплины по учебному плану)
| Направление подготовки | Информационные системы и технологии | |||||
| Квалификация (степень) выпускника | Бакалавр | |||||
| Профиль подготовки | Информационные системы испытаний космических ЛА | |||||
| Форма обучения | очная | |||||
| (очная, очно-заочная и др.) | ||||||
| Выпускающая кафедра | 308 | |||||
| Обеспечивающая кафедра | КТ1 | |||||
| Кафедра-разработчик рабочей программы | 308 | |||||
| Семестр | Трудоем-кость, час. | Лек-ций, час. | Практич. занятий, час. | Лаборат. работ, час. | СРС, час. | Экзаменов, час. | Форма промежуточного контроля |
| 2 | 144 | 34 | 16 | 0 | 94 | 0 | Зо |
| Итого | 144 | 34 | 16 | 0 | 94 | 0 |
Москва
2011
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Разделы рабочей программы
-
Цели освоения дисциплины
-
Структура и содержание дисциплины
-
Учебно-методическое и информационное обеспечение дисциплины
-
Материально-техническое обеспечение дисциплины
Приложения к рабочей программе дисциплины
Приложение 1. Аннотация рабочей программы
Приложение 2. Cодержание учебных занятий
Приложение 3. Прикрепленные файлы
Программа составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки 230400 Информационные системы и технологии
Авторы программы:
| Гридин А.Н. | _________________________ |
| Заведующий обеспечивающей кафедрой КТ1 | _________________________ |
Программа одобрена:
| Заведующий выпускающей кафедрой 308 _________________________ | Декан выпускающего факультета 3 _________________________ |
-
ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
Целью освоения дисциплины Дискретная математика является достижение следующих результатов образования (РО):
| N | Шифр | Результат освоения |
| 1 | З-7 | Знать основные понятия и методы элементов математической логики и дискретной математики |
| 2 | З-12 | Знать основные сведения о дискретных структурах, используемых в персональных компьютерах, основные алгоритмы типовых численных методов решения математических задач, один из языков программирования, структуру локальных и глобальных компьютерных сетей |
| 3 | Знать основные понятия и методы дискретной математики и математической логики | |
| 4 | Знать основные сведения о дискретных структурах и их свойствах | |
| 5 | Знать основные алгоритмы решения типовых задач теории множеств, теории чисел, теории графов, комбинаторики | |
| 6 | Уметь применять методы дискретной математики при решении задач системного анализа и оптимизации структур информационных систем | |
| 7 | Владеть навыками построения математических моделей информационных систем и технологий |
Перечисленные РО являются основой для формирования следующих компетенций: (в соответствии с ФГОС ВПО и требованиями к результатам освоения основной образовательной программы (ООП))
| N | Шифр | Компетенция |
| 1 | ОК-6 | Владение широкой общей подготовкой (базовыми знаниями) для решения практических задач в области информационных систем и технологий |
| 2 | ОК-10 | Готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования |
| 3 | Владение широкой общей подготовкой (базовыми зна-ниями) для решения практических задач в области ин-формационных систем и технологий. | |
| 4 | Способность проводить моделирование процессов и систем. | |
| 5 | Готовность использовать современные математические методы обработки, анализа и синтеза результатов профес-сиональных исследований. |
-
СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ
Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы), 144 часа(ов).
| Модуль | Раздел | Лекции | Практич. занятия | Лаборат. работы | СРС | Всего часов | Всего с экзаменами и курсовыми |
| Дискретная математика | Теория множеств | 10 | 6 | 0 | 20 | 36 | 144 |
| Теория чисел | 6 | 6 | 0 | 26 | 38 | ||
| Булева алгебра | 6 | 0 | 0 | 9 | 15 | ||
| Комбинаторика | 2 | 2 | 0 | 7 | 11 | ||
| Теория конечных автоматов | 2 | 0 | 0 | 3 | 5 | ||
| Теория графов | 8 | 2 | 0 | 17 | 27 | ||
| Всего | 34 | 16 | 0 | 82 | 132 | 144 | |
-
Содержание (дидактика) дисциплины
В разделе приводится полный перечень дидактических единиц, подлежащих усвоению при изучении данной дисциплины.
1. Теория множеств
- 1.1. Множества и их элементы
- 1.2. Символика теории множеств
- 1.3. Равенство множеств
- 1.4. Подмножества
- 1.5. Синглитоны
- 1.6. Пустое множество
- 1.7. Универсуум
- 1.8. Булеан
- 1.9. Методы задания множеств
- 1.10. Операции над множествами
- 1.11. Диаграммы Эйлера-Венна
- 1.12. Объединение и пересечение множеств
- 1.13. Относительное и абсолютное дополнение
- 1.14. Относительная и симметрическая разность множеств
- 1.15. Законы поглощения и склеивания
- 1.16. Законы де Моргана
- 1.17. Конечные и бесконечные множества
- 1.18. Мощность множества
- 1.19. Формулы включений и исключений
- 1.20. Декартово произведение множеств
- 1.21. Кортёжи
- 1.22. Степень множества
- 1.23. Бинарные и n-арные отношения
- 1.24. Симметрия отношений
- 1.25. Транзитивность и рефлексивность отношений
- 1.26. Отношения эквивалентности
- 1.27. Фактор-множество
- 1.28. Отношения строго порядка
- 1.29. Отношения нестрого порядка
- 1.30. Функциональные отношения
- 1.31. Реляционная алгебра
- 1.32. Бесконечные множества
- 1.33. Счетные и несчетные множества
- 1.34. Континуум
- 1.35. Сравнение бесконечных множеств
- 1.36. Диагональный метод Кантора
- 1.37. Иррациональные числа
- 1.38. Алгебраические и трансцендентные числа
- 1.39. Трансфинитные числа
- 1.40. Парадоксы теории множеств
- 1.41. Аксиоматика теории множеств
- 1.42. Список Давида Гильберта
- 1.43. Теоремы Гёделя о неполноте
- 1.44. Группа Бурбаки
- 1.45. Усложнение математических доказательств. Применение для доказательств теорем и лемм компьютеров
- 1.46. Деятельность Лофти Заде
- 1.47. Лингвистическая переменная
- 1.48. Степень принадлежности множеству
- 1.49. Нечёткие множества
- 1.50. Операции с нечёткими множествами и их свойства
- 1.51. Нечёткая логика
- 1.52. Мягкие вычисления
2. Теория чисел
- 2.1. Числа и цифры
- 2.2. Системы счисления и нумерации
- 2.3. Числовые множества
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















