rpd000009139 (1008887)
Текст из файла
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Московский авиационный институт
(национальный исследовательский университет)
УТВЕРЖДАЮ
Проректор по учебной работе
______________Куприков М.Ю.
“____“ ___________20__
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (000009139)
Численные методы и алгоритмы
(указывается наименование дисциплины по учебному плану)
Направление подготовки | Двигатели летательных аппаратов | |||||
Квалификация (степень) выпускника | Бакалавр | |||||
Профиль подготовки | 160700.Б2, 160700.Б8 | |||||
Форма обучения | очная | |||||
(очная, очно-заочная и др.) | ||||||
Выпускающая кафедра | 201, 202 | |||||
Обеспечивающая кафедра | 806 | |||||
Кафедра-разработчик рабочей программы | 806 | |||||
Семестр | Трудоем-кость, час. | Лек-ций, час. | Практич. занятий, час. | Лаборат. работ, час. | СРС, час. | Экзаменов, час. | Форма промежуточного контроля |
3 | 144 | 24 | 26 | 0 | 67 | 27 | Э |
Итого | 144 | 24 | 26 | 0 | 67 | 27 |
Москва
2012 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Разделы рабочей программы
-
Цели освоения дисциплины
-
Структура и содержание дисциплины
-
Учебно-методическое и информационное обеспечение дисциплины
-
Материально-техническое обеспечение дисциплины
Приложения к рабочей программе дисциплины
Приложение 1. Аннотация рабочей программы
Приложение 2. Cодержание учебных занятий
Приложение 3. Прикрепленные файлы
Программа составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки 160700 Двигатели летательных аппаратов
по профилям:
160700.Б2 Авиационные силовые установки
160700.Б8 Комбинированные двигатели летательных аппаратов
Авторы программы :
Ревизников Д.Л. | _________________________ |
Заведующий обеспечивающей кафедрой 806 | _________________________ |
Программа одобрена:
Заведующий выпускающей кафедрой 201 _________________________ | Декан выпускающего факультета 2 _________________________ |
Заведующий выпускающей кафедрой 202 _________________________ | |
-
ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
Целью освоения дисциплины Численные методы и алгоритмы является достижение следующих результатов образования (РО):
N | Шифр | Результат освоения |
1 | З-3 | Знать основные математические, физические, химические положения, законы |
2 | У-3 | Уметь применять информационные технологии для разработки двигателей летательных аппаратов и их отдельных узлов |
3 | Умения: практические – разработка алгоритмов решения задач. | |
4 | Навыками программирования в современных средах разработки программных приложений; | |
5 | Владеть элементами математического и функционального анализа |
Перечисленные РО являются основой для формирования следующих компетенций: (в соответствии с ФГОС ВПО и требованиями к результатам освоения основной образовательной программы (ООП))
N | Шифр | Компетенция |
1 | ОК-10 | Творчески применять основные законы естественнонаучных дисциплин в профессиональной деятельности, применяет методы математического анализа и моделирования, теоретического и экспериментального исследования |
2 | ОК-11 | Осозновать сущность и значение информации в развитии современного общества; владеть основными методами, способами и средствами получения, хранения, переработки информации |
3 | ОК-13 | Применять прикладные программные средства при решении практических вопросов |
4 | ПК-1 | Принимать участие в работах по расчету и конструированию отдельных деталей и узлов двигателей летательных аппаратов в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования |
-
СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ
Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы), 144 часа(ов).
Модуль | Раздел | Лекции | Практич. занятия | Лаборат. работы | СРС | Всего часов | Всего с экзаменами и курсовыми |
Численные методы | Вычислительные методы алгебры | 8 | 8 | 0 | 20 | 36 | 144 |
Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 2 | 2 | 0 | 5 | 9 | ||
Теория приближения функций и её приложения | 6 | 8 | 0 | 20 | 34 | ||
Численные методы решения задач для ОДУ | 8 | 8 | 0 | 22 | 38 | ||
Всего | 24 | 26 | 0 | 67 | 117 | 144 |
-
Содержание (дидактика) дисциплины
В разделе приводится полный перечень дидактических единиц, подлежащих усвоению при изучении данной дисциплины.
1. Численные методы решения систем линейных алгебраических уравнений (СЛАУ)
- 1.1. Норма матрицы и вектора. Согласованность норм. Понятие обусловленности СЛАУ.
- 1.2. Метод Гаусса решения СЛАУ. LU – разложение матриц. Метод Гаусса с выбором ведущего элемента. Матрица перестановок.
- 1.3. Вычисление обратной матрицы с использованием метода Гаусса.
- 1.4. Метод прогонки решения СЛАУ.
- 1.5. Метод простых итераций решения СЛАУ. Достаточное условие сходимости. Погрешность решения.
- 1.6. Метод Зейделя решения СЛАУ.
- 1.7. Собственные значения и собственные векторы матриц, подобные преобразования для произвольных и симметричных матриц.
- 1.8. Оценка спектрального радиуса степенным методом.
- 1.9. Метод вращения нахождения собственных значений и собственных векторов матриц.
- 1.10. QR-алгоритм нахождения собственных значений матриц.
2. Численные методы решения нелинейных уравнений и систем
- 2.1. Нелинейные уравнения. Основные этапы нахождения корней. Метод половинного деления, погрешность.
- 2.2. Метод простых итераций решения нелинейных уравнений, погрешность, геометрический смысл. Достаточное условие сходимости.
- 2.3. Метод Ньютона решения нелинейных уравнений, погрешность, геометрический смысл.
- 2.4. Метод секущих решения нелинейных уравнений, погрешность, геометрический смысл.
3. Методы приближения функций
- 3.1. Общая характеристика задач и методов приближения таблично заданных функций. Единственность интерполяционного полинома.
- 3.2. Интерполяционные полиномы в форме Лагранжа и форме Ньютона. Погрешность.
- 3.3. Интерполяция сплайнами. Построение кубических сплайнов.
- 3.4. Тригонометрическая интерполяция.
- 3.5. Процедура Рунге-Ромберга оценки погрешности численного интегрирования.
- 3.6. Численное интегрирование. Формула Симпсона. Погрешность.
- 3.7. Метод наименьших квадратов.
- 3.8. Численное дифференцирование. Основные формулы. Оценка погрешности.
- 3.9. Численное интегрирование. Формулы прямоугольников и трапеций. Погрешности.
4. Численные методы решения начальных и краевых задач для обыкновенных дифференциальных уравнений (ОДУ) и систем ОДУ
- 4.1. Постановка задачи Коши для ОДУ и систем ОДУ. Метод Эйлера.
- 4.2. Модификации метода Эйлера решения задачи Коши для ОДУ и систем ОДУ.
- 4.3. Семейство методов Рунге-Кутта. Метод Рунге-Кутта IV порядка.
- 4.4. Многошаговые методы. Семейство методов Адамса решения задачи Коши для ОДУ.
- 4.5. Жесткие системы ОДУ. Методы решения.
- 4.6. Постановка краевых задач для ОДУ. Численные методы решения.
- 4.7. Решение краевых задач для ОДУ методом стрельбы.
- 4.8. Решение краевых задач для ОДУ методом конечных разностей.
- 4.9. Неявные методы решения задачи Коши для ОДУ и систем ОДУ.
- 4.10. Процедура Рунге-Ромберга оценки погрешности решения краевой задачи для ОДУ.
-
Лекции
№ п/п | Раздел дисциплины | Объем, часов | Тема лекции | Дидакт. единицы |
1 | 1.1.Вычислительные методы алгебры | 2 | Вводная лекция | 1.1 |
2 | 1.1.Вычислительные методы алгебры | 2 | Прямые методы решения СЛАУ | 1.2, 1.3, 1.4 |
3 | 1.1.Вычислительные методы алгебры | 2 | Итерационные методы решения СЛАУ | 1.5, 1.6 |
4 | 1.1.Вычислительные методы алгебры | 2 | Методы решения задачи на собственные значения и собственные векторы матриц | 1.10, 1.7, 1.8, 1.9 |
5 | 1.2.Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 2 | Методы решения нелинейных уравнений | 2.1, 2.2, 2.3, 2.4 |
6 | 1.3.Теория приближения функций и её приложения | 4 | Методы приближения функций | 3.1, 3.2, 3.3, 3.4, 3.7 |
7 | 1.3.Теория приближения функций и её приложения | 2 | Методы численного дифференцирования и интегрирования | 3.8, 3.9, 3.6, 3.5 |
8 | 1.4.Численные методы решения задач для ОДУ | 4 | Численные методы решения задачи Коши для ОДУ | 4.1, 4.2, 4.3, 4.4, 4.9, 4.5 |
9 | 1.4.Численные методы решения задач для ОДУ | 4 | Численные методы решения краевых задач для ОДУ | 4.6, 4.7, 4.8, 4.10 |
Итого: | 24 |
-
Практические занятия
№ п/п | Раздел дисциплины | Объем, часов | Тема практического занятия | Дидакт. единицы |
1 | 1.1.Вычислительные методы алгебры | 2 | Нормы векторов и матриц. Обусловленность матриц. | 1.1 |
2 | 1.1.Вычислительные методы алгебры | 2 | Прямые методы решения СЛАУ | 1.3, 1.2, 1.4 |
3 | 1.1.Вычислительные методы алгебры | 2 | Итерационные методы решения СЛАУ | 1.5, 1.6 |
4 | 1.1.Вычислительные методы алгебры | 2 | Нахождение собственных значений и собственных векторов матриц | 1.9, 1.8, 1.10 |
5 | 1.2.Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 2 | Решение нелинейных уравнений | 2.1, 2.4, 2.2 |
6 | 1.3.Теория приближения функций и её приложения | 2 | Полиномиальная интерполяция | 3.2 |
7 | 1.3.Теория приближения функций и её приложения | 2 | Аппроксимация методом наименьших квадратов | 3.7 |
8 | 1.3.Теория приближения функций и её приложения | 2 | Численное дифференцирование | 3.8 |
9 | 1.3.Теория приближения функций и её приложения | 2 | Численное интегрирование | 3.6, 3.9 |
10 | 1.4.Численные методы решения задач для ОДУ | 2 | Одношаговые методы решения задачи Коши для ОДУ | 4.2, 4.1, 4.3 |
11 | 1.4.Численные методы решения задач для ОДУ | 2 | Многошаговые методы решения задачи Коши для ОДУ | 4.4 |
12 | 1.4.Численные методы решения задач для ОДУ | 2 | Решение краевых задач для ОДУ методом стрельбы | 4.7 |
13 | 1.4.Численные методы решения задач для ОДУ | 2 | Решение краевых задач для ОДУ методом конечных разностей | 4.8 |
Итого: | 26 |
-
Лабораторные работы
№ п/п | Раздел дисциплины | Наименование лабораторной работы | Наименование лаборатории | Объем, часов | Дидакт. единицы |
Итого: |
-
Типовые задания
№ п/п | Раздел дисциплины | Объем, часов | Наименование типового задания |
Итого: |
-
Курсовые работы и проекты по дисциплине
-
Рубежный контроль
-
Промежуточная аттестация
1. Экзамен (3 семестр)
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.