Главная » Просмотр файлов » Вопрос_64_Нечаев

Вопрос_64_Нечаев (1006306)

Файл №1006306 Вопрос_64_Нечаев (Вопросы по разным темам с ответами (программирование))Вопрос_64_Нечаев (1006306)2017-06-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БИЛЕТ №64

Основные парадигмы многослойных нейронных сетей (сеть обратного распространения, сеть встречного распространения).

Основная информация

Процедура обратного распространения

Многослойная сеть

Процедура обратного распространения применима к сетям с любым числом слоев. Однако для того, чтобы продемонстрировать алгоритм, достаточно двух слоев.

Общие сведения

Обратное распространение – это систематический метод обучения многослойных искусственных нейронных сетей.

На рис.1 показан нейрон, используемый в качестве основного строительного блока в сетях обратного распространения. На него подается множество входов, идущих либо извне, либо от предшествующего слоя. Каждый из этих входов умножается на соответствующий вес, и произведения суммируются. Сумма NET должна быть вычислена для каждого нейрона сети, затем она модифицируется с помощью активационной функции и получается сигнал OUT. На рис.2 показана активационная функция, обычно используемая для сетей обратного распространения.

Рис.1. Искусственный нейрон с активационной функцией.

На рис.2 показана активационная функция, обычно используемая для сетей обратного распространения.

OUT = 1/(1+ e-NET) (1)

Рис. 2

Эта функция, называемая сигмоидом, удобна, т.к. имеет простую производную, что используется при реализации алгоритма обратного распространения.

 OUT/OUTOUT

Сигмоид, который иногда называется также логистической или сжимающей функцией, сужает диапазон изменения NET так, что значение OUT лежит между нулем и единицей. Многослойные нейронные сети обладают большей представляющей способностью, чем однослойные, а сжимающая функция обеспечивает требуемую нелинейность.

На рис.3 изображена многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Первый слой нейронов служит лишь в качестве распределительных точек, суммирования входов здесь не производится. Каждый нейрон последующих слоев выдает сигналы NET и OUT.

Рис.3. Двухслойная сеть обратного распространения.

Обучение сети обратного распространения

Целью обучения сети является такая подстройка ее весов, чтобы приложение некоторого множества входов приводило к требуемому множеству выходов. При обучении предполагается, что для каждого входного вектора существует парный ему целевой вектор, задающий требуемый выход. Вместе они называются обучающей парой. Например, входная часть обучающей пары может состоять из набора нулей и единиц, представляющего образ некоторой буквы алфавита. Совокупность обучающих пар называется обучающим множеством.

Перед началом обучения всем весам должны быть присвоены небольшие начальные значения, выбранные случайным образом. Это гарантирует, что в сети не произойдет насыщения большими значениями весов, и предотвращает ряд других патологических случаев. Например, если всем весам придать одинаковые начальные значения, а для требуемого функционирования нужны неравные значения, то сеть не сможет обучиться.

Алгоритм обучения:

  1. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.

  2. Вычислить выход сети.

  3. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).

На шаги 1 и 2 можно смотреть как на «проход вперед», так как сигнал распространяется по сети от входа к выходу.



  1. Подкорректировать веса сети так, чтобы минимизировать ошибку.

  2. Повторять шаги с 1 по 4 для каждого вектора обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Шаги 3, 4 составляют «обратный проход», вычисляемый сигнал ошибки распространяется обратно по сети и используется для подстройки весов.



Проход вперед

Шаги 1 и 2 могут быть выражены в векторной форме следующим образом: подается входной вектор Х и на выходе получается вектор Y. Векторная пара вход-цель, Х и Т, берется из обучающего множества. Вычисления проводятся над вектором Х, чтобы получить выходной вектор Y.

Вычисления в многослойных сетях выполняются слой за слоем, начиная с ближнего ко входу слоя. Величина NET каждого нейрона первого слоя вычисляется как взвешенная сумма входов нейрона. Затем активационная функция F “сжимает” NET и дает OUT для каждого нейрона в этом слое. Когда множество выходов слоя получено, оно является входным множеством для следующего слоя. Процесс повторяется слой за слоем, пока не будет получено заключительное множество выходов сети.

Этот процесс может быть выражен в векторной форме. Рассмотрим веса между нейронами как матрицу W. Например, вес от нейрона 8 в слое 2 к нейрону 5 в слое 3 обозначается как w8,5. Тогда NET- вектор слоя N может быть выражен как произведение X и W. В векторном обозначении: N=X*W. Покомпонентным применением функции F к NET- вектору получается выходной вектор О.

Таким образом, для данного слоя вычислительный процесс описывается следующим выражением:

O=F(X*W) (3)

Выходной вектор одного слоя является входным вектором для следующего, поэтому это выражение применяется несколько раз вплоть до вычисления выходного сигнала.

Обратный проход

Так как для каждого нейрона выходного слоя задано целевое значение, то подстройка весов легко осуществляется с использованием модифицированного дельта-правила (-разность между целевым и реальным выходом). Внутренние слои назовем “скрытыми слоями”. Для их выходов не имеется целевых значений для сравнения. Поэтому обучение усложняется.

На рис. 4 показан процесс обучения для одного веса от нейрона р в скрытом слое j к нейрону q в выходном слое k.

Рис.4. Настройка веса в выходном слое.

Выход нейрона слоя k, вычитаемый из целевого значения (Target), дает сигнал ошибки. Он умножается на производную сжимающей функции [OUT*(1-OUT)], вычисленную для этого нейрона слоя k, давая, таким образом, величину q,k:

q,kOUT*(1-OUT)*(Target-OUT). (4)

Затем q,kумножается на величину OUT нейрона j, из которого выходит рассматриваемый вес. Это произведение, в свою очередь, умножается на коэффициент скорости обучения (обычно от 0.01 до 1), и результат прибавляется к весу. Такая же процедура выполняется для каждого веса от нейрона скрытого слоя к нейрону в выходном слое.

Следующие уравнения иллюстрируют это вычисление:

wpq,k=q,kOUTp,j, (5)

wpq,k(n+1)= wpq,k(n)+wpq,k , (6)

где

wpq,k(n) - величина веса от нейрона р в скрытом слое к нейрону q в выходном слое на шаге n (до коррекции). Отметим, что индекс k относится к слою, в котором заканчивается данный вес, то есть с которым он объединен;

wpq,k(n+1) - величина веса на шаге n+1(после коррекции);

q,k - величина длянейронаq в выходном слое k;

OUTp,j - величина OUT для нейрона p в скрытом слое j.

Подстройка весов скрытого слоя

Рассмотрим один нейрон в скрытом слое, предшествующем выходному слою. При проходе вперед этот нейрон передает входной сигнал нейронам в выходном слое через соединяющие их веса. Во время обучения эти веса функционируют в обратном порядке, пропуская величину от выходного слоя назад к скрытому слою. Каждый из этих весов умножается на величину  нейрона, к которому он присоединен в выходном слое. Величина , необходимая для нейрона скрытого слоя, получается суммированием всех таких произведений и умножением на производную сжимающей функции (см. рис. 5):

p,j=OUTp,j(1- OUTp,j)[ qq,kwpq,k] (7)

Когда значение  получено, веса, питающие первый скрытый уровень, могут быть подкорректированы с помощью уравнений подстройки весов выходного слоя, где индексы модифицированы в соответствии со слоем.

Рис. 5. Настройка веса в скрытом слое.

Для каждого нейрона в данном скрытом слое должно быть вычислено и подстроены все веса, ассоциированные с этим слоем. Этот процесс повторяется слой за слоем по направлению к входу, пока все веса не будут подкорректированы.

Добавление нейронного смещения

Во многих случаях желательно наделять каждый нейрон обучаемым смещением. Это позволяет сдвигать начало отсчета логической функции, давая эффект, аналогичный подстройке порога персептронного нейрона, и приводит к ускорению процесса обучения. Эта возможность может быть легко введена в обучающий алгоритм с помощью добавляемого к каждому нейрону веса, присоединенного к +1. Этот вес обучается так же, как и все остальные веса, за исключением того, что подаваемый на него сигнал равен +1, а не выходу нейрона предыдущего слоя.

Трудности обучения

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значе­ниях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. Обычно этого избегают уменьшением размера шага , что это увеличивает время обучения.

Локальные минимумы

Обратное распространение использует разновидность градиентного спуска, т.е. осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в на­правлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть не способна из него выбраться.

Размер шага

При доказательстве сходимости коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на прак­тике, так как ведет к бесконечному времени обучения. Размер шага должен браться конечным, и в этом вопросе приходится опираться только на опыт. Если размер шага очень мал, то сходимость слишком медленная, если же очень велик, то может возникнуть паралич или постоянная неустойчивость.

Применения

Обратное распространение было использовано в широкой сфере прикладных исследований. Некоторые из них описываются здесь, чтобы продемонстрировать мощь этого метода. Фирма NEC в Японии объявила недавно, что обратное распространение было ею использовано для визуального распознавания букв, причем точность превысила 99%. Это улучшение было достигнуто с помощью комбинации обычных алгоритмов с сетью обратного распространения, обеспечивающей дополнительную проверку. Достигнут впечатляющий успех с Net-Talk, системой, которая превращает печатный английский текст в высококачественную речь. Магнитофонная запись процесса обучения сильно напоминает звуки ребенка на разных этапах обучения речи. Обратное распространение использовалось в машинном распознавании рукописных английских слов. Буквы, нормализованные по размеру, наносились на сетку, и брались проекции линий, пересекающих квадраты сетки. Эти проекции служили затем входами для сети обратного распространения. Сообщалось о точности 99,7% при использовании словарного фильтра. Сообщалось об успешном применении обратного распространения к сжатию изображений, когда образы представлялись одним битом на пиксель, что было восьмикратным улучшением по сравнению с входными данными.

Сети встречного распространения

Общие сведения

Возможности сети встречного распространения, превосходят возможности однослойных сетей. Время же обучения по сравнению с обратным распространением может уменьшаться в сто раз. Встречное распространение не столь общо, как обратное распространение, но оно может давать решение в тех приложениях, где долгая обучающая процедура невозможна. Будет показано, что помимо преодоления ограничений других сетей встречное распространение обладает собственными интересными и полезными свойствами. Во встречном распространении объединены два хорошо известных алгоритма: самоорганизующаяся карта Кохонена и звезда Гроссберга. Их объединение ведет к свойствам, которых нет ни у одного из них в отдельности. Методы, которые подобно встречному распространению, объединяют различные сетевые парадигмы как строительные блоки, могут привести к сетям, более близким к мозгу по архитектуре, чем любые другие однородные структуры. Похоже, что в мозгу именно каскадные соединения модулей различной специализации позволяют выполнять требуемые вычисления. Сеть встречного распространения функционирует подобно столу справок, способному к обобщению. В процессе обучения входные векторы ассоциируются с соответствующими выходными векторами. Эти векторы могут быть двоичными, состоящими из нулей и единиц, или непрерывными. Когда сеть обучена, приложение входного вектора приводит к требуемому выходному вектору. Обобщающая способность сети позволяет получать правильный выход даже при приложении входного вектора, который является неполным или слегка неверным. Это позволяет использовать данную сеть для распознавания образов, восстановления образов и усиления сигналов.

Структура сети

На рис. 1 показана упрощенная версия сети встречного распространения. На нем иллюстрируются функциональные свойства этой парадигмы.

Характеристики

Тип файла
Документ
Размер
2,09 Mb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

ГОСЫ!!!
19, 27
12
39. Система управления файлами. Основные задачи ОС по управлению файлами. Логическая и физическая организация файловой системы
41
42. Понятие программных средств и их жизненный цикл
46. Поля Галуа и алгебра полиномов
47. Методы шифрования с открытым ключом
49
50. Экспертные системы. Архитектура. Основные компоненты
51. Эволюционное моделирование. Генетическое программирование
52
53
54. Теорема о полноте системы функций алгебры логики. Необходимость
57. Основные синтаксические конструкции языка ПРОЛОГ
58. Префиксная форма записи и списковая структура программы и данных на языке ЛИСП
59
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее