Необходимо найти экстремум функции
F(x)=(x1-3)2+(x2-4)2,
при условии, что переменные удовлетворяют условию
(x1-4)2+x2=1.
Функция Лагранжа имеет вид:
Выберите один ответ:
F(x)=(x1-3)2+(x2-4)2,
при условии, что переменные удовлетворяют условию
(x1-4)2+x2=1.
Функция Лагранжа имеет вид:
Выберите один ответ:
- L(x)=(x1-3)2-(x2-4)2λ((x1-4)2-x2-1)
- L(x)=(x1+3)2+(x2+4)2+λ((x1+4)2+x2-1)
- L(x)=(x1-3)2+(x2-4)2+λ((x1-4)2+x2-1)
- L(x)=(x1+3)2-(x2+4)2+λ((x1+4)2-x2+1)