Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по матведу любого варианта за 7 суток
Любой ДЗ по метрологии, стандартизации и сертификаци
Главная » Лекции » Инженерия » Сигналы и линейные системы » Системы преобразования сигналов

Системы преобразования сигналов

2021-03-09СтудИзба

1.3.  Системы  преобразования  сигналов [1,9,14,18]

Сигналы, в любой форме материального представления, содержат определенную полезную информацию. Если при преобразованиях сигналов происходит нарушение заключенной в них информации (частичная утрата, количественное изменение содержания и т.п.), то такие изменения называются искажениями сигнала. Если полезная информация остается постоянной, то такие изменения называются преобразованиями сигнала.

Любые изменения сигналов сопровождаются изменением их спектра и по характеру этого изменения разделяются на два вида: линейные и нелинейные. К нелинейным относят изменения, при которых в составе спектра сигналов появляются новые гармонические составляющие. При линейных изменениях сигналов изменяются амплитуды и/или начальные фазы гармонических составляющих спектра. И линейные, и нелинейные изменения сигналов могут происходить как с сохранением полезной информации, так и с ее искажением. Это зависит не только от характера изменения спектра сигналов, но и от спектрального состава самой полезной информации.

Общее понятие систем. Преобразование и обработка сигналов осуществляется в системах. Понятия сигнала и системы неразрывны, так как любой сигнал существует в пределах какой-либо системы. Система обработки сигналов может быть реализована как в материальной форме (специальное устройство, измерительный прибор, совокупность физических объектов с определенной структурой взаимодействия и т.п.), так и программно на ЭВМ или любом другом специализированном вычислительном устройстве. Форма реализации системы существенного значения не имеет и определяет только ее возможности при анализе и обработке сигналов.

Рис. 1.3.1. Графическое представление системы.

Безотносительно к назначению система всегда имеет вход, на который подается внешний входной сигнал, в общем случае многомерный, и выход, с которого снимается обработанный выходной сигнал. Если устройство системы и внутренние операции сигнальных преобразований принципиального значения не имеют, то система в целом может восприниматься в формализованной форме “черного ящика”.

Формализованная система представляет собой системный оператор (алгоритм) преобразования входного сигнала – воздействия или возбуждения s(t), в сигнал на выходе системы y(t) – отклик или выходную реакцию системы. Символическое обозначение операции преобразования (трансформации сигнала):  y(t) = T[s(t)].

Системный оператор T - это набор правил преобразования (transformation) сигнала s(t) в сигнал y(t). Так, например, в самом простейшем случае таким правилом может быть таблица перекодировки входных сигналов в выходные. Для общеизвестных операций преобразования сигналов применяются двухсимвольные индексы операторов трансформации, где вторым символом обозначается конкретный вид операции (например, TF- преобразование Фурье).

Рекомендуемые материалы

Входной сигнал системы может представлять собой m - мерный вектор, а выходной сигнал n - мерный вектор, при этом система будет иметь m входов и n выходов. Пример такой системы в геофизике: трехканальный аэро-гамма-спектрометр, на три входа решающего блока которого поступают потоки сигналов от калиевого, радиевого и ториевого каналов амплитудного анализатора спектрометра, а на три выхода решающего блока подаются результаты количественной интерпретации входной информации - сигналы количественных содержаний калия, урана и тория, при этом системный оператор реализует алгоритм решения системы трех линейных уравнений с тремя неизвестными.

Для детерминированных входных сигналов соотношение между выходными и входными сигналами всегда однозначно задается системным оператором. В случае реализации на входе системы случайного входного процесса аналогично существует однозначное соответствие процессов на выходе и входе системы, однако при этом одновременно происходит изменение статистических характеристик сигнала (математического ожидания, дисперсии, корреляционной функции и пр.), которое также определяется системным оператором.

Для полного определения системы необходимо задание характера, типа и области допустимых величин входных и выходных сигналов. Как правило, системы выполняются на сигналы одного типа по входу/выходу и подразделяются на системы непрерывного времени (аналоговые или дискретные сигналы на входе и выходе) и цифровые системы. Совокупность системного оператора Т и областей входных/выходных сигналов образует математическую модель системы.

Линейные и нелинейные системы составляют два основных класса систем обработки сигналов. Термин линейности (linear) означает, что система преобразования сигналов должна иметь произвольную, но в обязательном порядке линейную связь между входным сигналом (возбуждением) и выходным сигналом (откликом) с определенным изменением спектрального состава входного сигнала (усиление или подавление определенных частотных составляющих сигнала). В нелинейных (nonlinear) системах связь между входным и выходным сигналом определяется произвольным нелинейным законом с дополнением частотного состава входного сигнала частотными составляющими, отсутствующими во входном сигнале.

Математически связь между аналоговыми сигналами входа s(t) и выхода y(t) в линейной системе обычно задается линейным дифференциальным уравнением:

aj = bi.                                          (1.3.1)

где  aj и bi – параметрические коэффициенты системы. Максимальный порядок производной входного сигнала в уравнении (1.3.1) не превышает порядка  производной выходного сигнала, т.е. j ≤ i. Значение  j  называется порядком системы. При нормировке  уравнения к  ао = 1 получаем неоднородное линейное дифференциальное уравнение для произвольного входного сигнала s(t), решение которого дает выходной сигнал y(t):

y(t) =bi - aj.                                  (1.3.1')

            Аналогичная связь выхода с входом в дискретной (цифровой) системе описывается разностными уравнениями:

aj y((n-j)Dt) = bi s((n-i)Dt).                                    (1.3.2)

y(nDt) =bi s((n-i)Dt) -aj y((n-j)Dt).                          (1.3.2')

            Уравнение (1.3.2') можно рассматривать как алгоритм последовательного вычисления значений y(nDt), n = 0,1,2, …, по значениям входного сигнала s(nDt) при известных значениях коэффициентов aj, bi и задании определенных начальных условий s(-nDt), y(-nDt).

Стационарные и нестационарные системы. Система считается стационарной и имеет постоянные параметры, если ее свойства (математический алгоритм оператора преобразования) в пределах заданной точности не зависят от входного и выходного сигналов и не изменяются ни во времени, ни от каких-либо других внешних факторов. Математически это означает задание системы уравнениями типа (1.3.1-2) с постоянными значениями коэффициентов aj и bi. В противном случае система является нестационарной и называется параметрической или системой с переменными параметрами. Среди последних большое значение имеют так называемые адаптивные системы обработки данных. В этих системах производится, например, оценивание определенных параметров входных и выходных сигналов, по результатам сравнения которых осуществляется подстройка параметров преобразования (переходной характеристики системы) таким образом, чтобы обеспечить оптимальные по производительности условия обработки сигналов или минимизировать погрешность обработки.

Основные системные операции. К базовым линейным операциям, из которых могут быть сформированы любые линейные операторы преобразования, относятся операции скалярного умножения, сдвига и сложения сигналов:

y(t) = c ´ s(t),         y(t) = s(t-Dt),         y(t) = a(t)+b(t).

Отметим, что строго корректно операции сложения и умножения являются линейными только для аналоговых и дискретных сигналов. В случае цифровых сигналов они линейны относительно самих цифровых сигналов, но если последние - результат операции АЦП, то сложение и умножение не может считаться линейным абсолютно точно по отношению к исходным сигналам.

Для нелинейных систем выделим важный тип безинерционных операций нелинейной трансформации сигнала, результаты которой зависят только от его входных значений. К ним относятся, например, операции квадратирования и логарифмирования сигнала:

y(t) = [s(t)]2,     y(t) = log[s(t)].

Линейные системы. Система считается линейной, если ее реакция на входные сигналы аддитивна (выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия).

Принцип аддитивности требует, чтобы реакция системы на сумму входных сигналов была равна сумме реакций на каждый сигнал в отдельности. Так, для двух сигналов должно иметь место:

T[a(t)+b(t)] = T[a(t)]+T[b(t)].

Принцип однородности или пропорционального подобия требует сохранения однозначности масштаба преобразования при любой амплитуде входного сигнала:

T[c ´ s(t)] = c ´ T[s(t)].

Другими словами, отклик линейной системы на взвешенную сумму входных сигналов должен быть равен взвешенной сумме откликов на отдельные входные сигналы независимо от их количества и для любых весовых коэффициентов, в том числе комплексных.

Примеры.

  1. Система y(t) = a2t. 

       y(t1) = a2t1,  y(t2) = a2t2,  y(ct) = a2ct. 

       y(t1+t2) = a2(t1+t2) = a2t1+a2t2 = y(t1)+y(t2).  Система аддитивна.

       cy(t) = ca2t = a2ct = y(сt). Система однородна.  Следовательно, система линейна.

  2. Система y(t) = at2

       y(t1)= at12,  y(t2)= at22,  y(ct)= a(ct)2= ac2t2.

       y(t1+t2)= a(t1+t2)2 ¹ y(t1)+y(t2)= at12+at22. Система не аддитивна.

       с y(t) = с at2 ¹ y(сt) = ac2t2. Система неоднородна.  Следовательно, система нелинейна.

При программной реализации линейных систем на ЭВМ особых затруднений с обеспечением линейности в разумных пределах значений входных и выходных сигналов, как правило, не возникает. При физической (аппаратной) реализации систем обработки данных диапазон входных и/или выходных сигналов, в котором обеспечивается линейность преобразования сигналов, всегда ограничен и должен быть специально оговорен в технической документации или методической инструкции. 

Инвариантность систем к сдвигу. Система называется инвариантной к сдвигу, если сдвиг входного сигнала по аргументам (времени, координатам пространства и т.п.) вызывает соответствующий сдвиг выходного сигнала:

y(x,t) = T[s(x,t)],   T[s(x-Dx,t-Dt)] = y(x-Dx,t-Dt).

Инвариантность системы к сдвигу является одним из подтверждений постоянства ее параметров.

Линейные системы, инвариантные к сдвигу. Линейность и инвариантность к сдвигу являются независимыми свойствами систем и не определяют друг друга. Так, например, операция квадратирования сигнала инвариантна к сдвигу, но нелинейна.

В теории анализа и обработки данных основное место занимают системы, линейные и инвариантные к сдвигу (ЛИС - системы). Они обладают достаточно широкими практическими возможностями при относительной простоте математического аппарата. В дальнейшем, если это специально не оговаривается, будем иметь в виду именно такие системы.

            Преимущество, которое отдается ЛИС - системам в методах обработки информации, базируется на возможности разложения входного сигнала любой, сколь угодно сложной формы, на составляющие простейших форм, отклик системы на которые известен и хорошо изучен, с последующим вычислением выходного сигнала в виде суммы откликов на все составляющие входного сигнала. В качестве простейших форм разложения сигналов используются, как правило, единичные импульсы и гармонические составляющие. Разложение по единичным импульсам применяется при динамическом представлении сигнала в зависимости от реальных физических аргументов (времени, координат и пр.) и использует операцию свертки. Разложение на гармонические составляющие использует спектральное (частотное) представление сигнала и преобразование Фурье.

Обратите внимание на лекцию "9 Становление первых форм теоретического знания в античной культуре".

Рис. 1.3.2 Соединения систем.

            Соединения ЛИС - систем. При последовательном (каскадном) соединении систем выходной сигнал одной системы служит входным сигналом для второй и т.д. в зависимости от количества составляющих систем каскада. По отношению к общей системной операции преобразования порядок соединения входящих в нее систем значения не имеет. Так, для двух последовательно соединенных систем на рис. 1.3.2:

y(t) = T2[T1[s(t)]] = T1[T2[s(t)]].

            При параллельном соединении входной сигнал поступает одновременно на входы всех составляющих систем, а выходные сигналы систем суммируются:

y(t) = T1[s(t)] + T2[s(t)] + ... + TN[s(t)].

            Образуемые в результате соединений системы в целом также являются ЛИС - системами, если линейны и инвариантны к сдвигу системы, в них входящие.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее