Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ

Корреляционный анализ сигналов

2021-03-09СтудИзба

3 Корреляционный анализ сигналов

Смысл спектрального анализа сигналов заключается в изучении того, как сигнал может быть представлен в виде суммы (или интеграла) простых гармонических колебаний и как форма сигнала определяет структуру распределения по частотам амплитуд и фаз этих колебаний. В противоположность этому задачей корреляционного анализа сигналов является определение меры степени сходства и различия сигналов или сдвинутых по времени копий одного сигнала. Введение меры открывает пути к проведению количественных измерений степени схожести сигналов. Будет показано, что существует определенная взаимосвязь между спектральными и корреляционными характеристиками сигналов.

3.1 Автокорреляционная функция (АКФ)

Автокорреляционная функция сигнала с конечной энергией – это значение интеграла от произведения двух копий этого сигнала, сдвинутых относительно друг друга на время τ, рассматриваемое в функции этого временного сдвига τ:

.

Если сигнал определен на конечном интервале времени , то его АКФ находится как:

,

где  - интервал перекрытия сдвинутых копий сигнала.

Считается, что чем больше значение автокорреляционной функции  при данном значении , тем в большей степени две копии сигнала, сдвинутые на промежуток времени , похожи друг на друга. Поэтому корреляционная функция  и является мерой сходства для сдвинутых копий сигнала.

Рекомендуемые материалы

Вводимая таким образом мера сходства для сигналов, имеющих форму случайных колебаний вокруг нулевого значения, обладает следующими характерными свойствами.

Если сдвинутые копии сигнала колеблются примерно в такт друг к другу, то это является признаком их схожести и АКФ принимает большие положительные значения (большая положительная корреляция). Если копии колеблются почти в противофазе, АКФ принимает большие отрицательные значения (антисходство копий сигнала, большая отрицательная корреляция).

Максимум АКФ достигается при совпадении копий, то есть при отсутствии сдвига. Нулевые значения АКФ достигаются при сдвигах, при которых не заметно ни сходства, ни антисходства копий сигнала (нулевая корреляция,


отсутствие корреляции).

На рис.3.1 изображен фрагмент реализации некоторого сигнала на интервале времени от 0 до 1 с. Сигнал случайным образом колеблется вокруг нулевого значения. Поскольку интервал существования сигнала конечен, то конечна и его энергия. Его АКФ можно вычислить в соответствии с уравнением:

.

Автокорреляционная функция сигнала, вычисленная в MathCad в соответствии с этим уравнением, представлена на рис. 3.2. Корреляционная функция показывает не только то, что сигнал похож сам на себя (сдвиг τ=0), но и то, что некоторой схожестью обладают и копии сигнала, сдвинутые друг относительно друга приблизительно на 0.063 с (боковой максимум автокорреляционной функции). В противоположность этому копии сигнала сдвинутые на 0.032 с, должны быть антипохожи дуг на друга, то есть быть в некотором смысле противоположными друг другу.

На рис.33 показаны пары этих двух копий. По рисунку можно проследить, что понимается под похожестью и антипохожестью копий сигнала.

Корреляционная функция обладает следующими свойствами:

1. При τ = 0 автокорреляционная функция принимает наибольшее значение, равное энергии сигнала

2. Автокорреляционная функция является четной функцией временного сдвига .

3. С ростом τ автокорреляционная функция убывает до нуля

4. Если сигнал не содержит разрывов типа δ - функций, то  - непрерывная функция.


5. Если сигнал является электрическим напряжением, то корреляционная функция имеет размерность .

Для периодических сигналов в определении автокорреляционной функции тот же самый интеграл делят еще на период повторения сигнала:

.

Так введенная корреляционная функция отличается следующими свойствами:

- значение корреляционной функции в нуле равно мощности сигнала ,

- размерность корреляционной функции равна квадрату размерности сигнала, например .

Для примера вычислим корреляционную функцию гармонического колебания :

Используя ряд тригонометрических преобразований, получим окончательно:

Таким образом, автокорреляционная функция гармонического колебания является косинусоидой с тем же периодом изменения, что и сам сигнал. При сдвигах, кратных периоду колебания, гармоника преобразуется в себя и АКФ принимает наибольшие значения, равные половине квадрата амплитуды. Сдвиги по времени, кратные половине периода колебания, равносильны смещению фазы на угол , при этом меняется знак колебаний, а АКФ принимает минимальное значение, отрицательное и равное половине квадрата амплитуды. Сдвиги, кратные четверти периода, переводят, например, синусоидальное колебание в косинусоидальное и наоборот. При этом АКФ обращается в нуль. Такие сигналы, находящиеся в квадратуре друг относительно друга, с точки зрения автокорреляционной функции оказываются совершенно не похожими друг на друга.

Важным является то, что в выражение для корреляционной функции сигнала не вошла его начальная фаза. Информация о фазе потерялась. Это означает, что по корреляционной функции сигнала нельзя восстановить сам сигнал. Отображение  в противоположность отображению  не является взаимно однозначным.

Если под механизмом генерирования сигналов понимать некоего демиурга, создающего сигнал по выбранной им корреляционной функции, то он смог бы создать целую совокупность сигналов (ансамбль сигналов), имеющих действительно одну и ту же корреляционную функцию, но отличающихся друг от друга фазовыми соотношениями.

Акт выбора начальной фазы можно считать:

- актом проявления сигналом своей свободной воли, независимой от воли создателя (возникновение отдельных реализаций некоторого случайного процесса),

- результатом постороннего насилия над сигналом (введение в сигнал измерительной информации, получаемой при проведении измерений какой либо физической величины).

Аналогичным образом обстоит дело с любым периодическим сигналом. Если периодический сигнал с основным периодом Т имеет амплитудный спектр  и фазовый спектр , то корреляционная функция сигнала принимает следующий вид:

.

Уже в этих примерах проявляется некоторая связь между корреляционной функцией и спектральными свойствами сигнала. Подробнее об этих соотношениях речь пойдет в дальнейшем.

3.2 Взаимнокорреляционная функция (ВКФ).

В отличие от автокорреляционной функции взаимнокорреляционная функция определяет степень схожести копий двух различных сигналов x(t) и y(t), сдвинутых на время τ друг относительно друга:

Взаимнокорреляционная функция обладает следующими свойствами:

1. При τ = 0 взаимнокорреляционная функция принимает значение, равное взаимной энергии сигналов, то есть энергии их взаимодействия

.

2. При любом τ имеет место соотношение:

,

где  - энергии сигналов.

3. Изменение знака временного сдвига равносильно взаимной перестановке сигналов:

.

4. С ростом τ взаимнокорреляционная функция хотя и не монотонно, но убывает до нуля

5. Значение взаимнокорреляционной функции в нуле  ничем не выделяется среди других значений.

Для периодических сигналов понятие взаимнокорреляционной функции, как правило, вообще не используется.

Приборы для измерения значений автокорреляционной и взаимнокорреляционной функций называются коррелометрами или корреляторами. Коррелометры применяются, например, для решения следующих информационно-измерительных задач:

- статистический анализ электроэнцефалограмм и других результатов регистрации биопотенциалов,

- определение пространственных координат источника сигнала по величине временного сдвига, при котором достигается максимум ВКФ,

- выделение слабого сигнала на фоне сильных статических несвязанных помех,

- обнаружение и локализация каналов утечки информации путем определения корреляции между сигналами радиоэфира в помещении и за его пределами,

- автоматизированное обнаружение в ближней зоне, распознавание и поиск работающих радиоизлучающих подслушивающих устройств, включая мобильные телефоны, используемые как подслушивающие устройства,

- локализация мест утечек в трубопроводах на основании определения ВКФ двух сигналов акустического шума, вызываемого утечкой, в двух точках измерения, в которых расположены датчики на трубе.

3.3 Соотношения между корреляционными и спектральными функциями.

Как корреляционные, так и спектральные функции описывают внутреннюю структуру сигналов, их внутреннее строение. Поэтому можно ожидать, что между этими двумя способами описания сигналов существует некоторая взаимозависимость. Наличие такой связи Вы уже видели на примере периодических сигналов.

Взаимная корреляционная функция, как и любая другая функция времени, может быть подвергнута преобразованию Фурье:

.

Изменим порядок интегрирования:

Выражение в квадратных скобках можно было бы рассматривать как преобразование Фурье для сигнала y(t), но в показателе экспоненты не стоит знак минус. Это говорит о том, что внутренний интеграл дает нам выражение , комплексно сопряженное со спектральной функцией .

Но выражение  не зависит от времени, поэтому его можно вынести за знак внешнего интеграла. Тогда внешний интеграл просто даст нам определение спектральной функции  сигнала x(t). Окончательно имеем:

.

Это означает, что преобразование Фурье для взаимной корреляционной функции двух сигналов равно произведению их спектральных функций, одна из которых подвергнута комплексному сопряжению. Это произведение называется взаимным спектром сигналов:

.

Из полученного выражения следует важный вывод: если спектры сигналов x(t) и y(t) не перекрывают друг друга, то есть располагаются в различных диапазонах частот, то такие сигналы являются некоррелированными, независимыми друг от друга.

Если положить в приведенных формулах: x(t) = y(t), то получим выражение для преобразования Фурье автокорреляционной функции

.

Это означает, что автокорреляционная функция сигнала и квадрат модуля его спектральной функции связаны друг с другом посредством преобразования Фурье.

Функция  называется энергетическим спектром сигнала . Энергетический спектр показывает, как общая энергия сигнала распределяется по частотам его отдельных гармонических составляющих.

3.4 Энергетические характеристики сигналов с частотной области

Взаимная корреляционная функция двух сигналов связана преобразованием Фурье с взаимным спектром сигналов, поэтому ее можно выразить в виде обратного преобразования Фурье от взаимного спектра:

.

Теперь подставим в эту цепочку равенств значение временного сдвига . В результате получим соотношение, которое определяет смысл равенства Релея:

,

то есть интеграл от произведения двух сигналов равен интегралу от произведения спектров этих сигналов, один из которых подвергнут операции комплексного сопряжения.

Ещё посмотрите лекцию "14 Подготовка России к войне" по этой теме.

Если считать сигналы одинаковыми x(t)=y(t), получится соотношение, позволяющее фактически по одной формуле вычислять энергию сигнала, как во временной, так и в частотной области:

.

Это соотношение называется равенством Парсеваля.

Периодические сигналы обладают бесконечной энергией, но конечной мощностью. При их рассмотрении мы уже сталкивались с возможностью вычисления мощности периодического сигнала через сумму квадратов модулей коэффициентов его комплексного спектра:

.

Это соотношение обладает полной аналогией с равенством Парсеваля.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее