Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ

Сварка и наплавка в защитных газах

2021-03-09СтудИзба

7.4. Сварка и наплавка в защитных газах

Сущность способа сварки и наплав­ки в защитных газах. В зону горения дуги под небольшим давлением пода­ют газ, который вытесняет воздух из этой зоны и защищает сварочную ванну от кислорода и азота воздуха. В зависимости от применяемого газосварку в защитных газах разделя­ют на сварку в активных и инертных газах (рис. 7.7), Сварку (наплавку) в защитных газах ведут как плавящим­ся, так и неплавящимся электродом. В первом случае металл электрода плавится и участвует в образовании сварного шва. При сварке неплавя­щимся электродом (обычно вольфра­мовым) металл электрода не плавит­ся и с металлом шва не реагирует, а присадочный материал вводят в зону дуги отдельно. Сварку неплавящим­ся электродом широко применяют при восстановлении деталей из алю­миния и его сплавов. Наибольшее распространение при восстановлении автомобильных де­талей получили сварка и наплавка в среде углекислого газа и аргона.

Сварка и наплавка деталей в среде углекислого газа. Сварка (наплавка) в углекислом газе — это способ свар­ки плавящимся электродом с защи­той сварочной ванны от воздуха угле­кислым газом. Сварка в углекислом газе голой, сплошной проволокой от носится к самым дешевым способам сварки углеродистых и низколегиро­ванных деталей. Поэтому по объему производства она занимает первое место среди механизированных спо­собов сварки плавлением.

При сварке в среде углекислого га­за (рис. 7.8) из сопла горелки, охваты­вающего поступающую в зону горе­ния дуги электродную проволоку, вы­текает струя газа, достаточная для оттеснения воздуха от реакционной зоны сварки. Защитные свойства струи зависит от физических свойств газа, в частности, от соотношения его плотности к плотности воздуха, Плотность углекислого газа доста­точно высокая, приблизительно в 1,5 раза больше плотности воздуха что позволяет обеспечить защиту реак­ционного пространства дуги от воздуха при относительно небольших рас­ходах газа в струе. Исследованиями установлено, что расход, газа в объё­ме 10л/мин уже обеспечивает доста­точную защиту реакционного про­странства.

Однако в процессе сварки углекис­лый газ, попавший в зону горения ду­ги, диссоциирует:2СО2=2С0+О2.

Поэтому сварка уже происходит не в чистом углекислом газе, а в равно­весной смеси газов СО2, СО и О2. Ко­личественное соотношение объемов N этих газов зависит от температуры (рис. 7.9). Из рис. 7.9 видно, что при температурах Т капель металла (приблизительно 2600 — 2800 К) со­держание кислорода в продуктах диссоциации углекислого газа только несколько меньше, чем в атмосфере воздуха. Следовательно, при сварке в среде углекислого газа обеспечива­ется практически полная защита расплавленного металла от азота воздуха. Однако сохраняется Почти такой же окислительный характер газовой смеси, каким бы он был при сварке голой электродной проволо­кой в атмосфере воздуха.

Таким образом, при сварке в среде СО2 необходимо предусматривать меры по раскислению наплавляемо­го металла. Раскисление можно проводить двумя методами: специальной обработкой металла шлаком в ре­зультате дополнительного введения флюса; применением электродной проволоки, в состав которой входят хорошие раскислители.

В практике сварочно-наплавочных работ распространение получил вто­рой способ. В основном при сварке в среде СО2 в качестве раскислителей используют кремний (0,6— 1,0 %) и марганец(1 — 2 %).

При использовании таких элект­родных проволок диаметром около 2 мм в наплавленном металле конечное содержание кислорода составляет 0,03 — 0,05 %, при содержании 0,3 — 0,4 % кремния и 1 % марганца. Та­ким образом, потеря кремния состав­ляет в среднем 0,8 — 0,35 = 0.45 %; а марганца 1,7—1,0 = 0,7%. Если пренебречь потерями на испарение, то расчетное количество раскислите­лей может связать кремний в SiO2 =

=0,5 %О2    и    марганец    в    МnО=0,2 %О2, т. е. в сумме 0,7 %.

Рекомендуемые материалы

При охлаждении наплавленного металла углерод, содержащийся в стали, окисляясь будет способство­вать образованию оксида углерода по следующим реакциям: С + О =СО и FеО + С = СО + Fе.

Образующийся при кристаллиза­ции наплавленного металла угарный газ (СО) выделяется в виде пузырь­ков, часть из которых, вследствие бы­строй кристаллизации сварочной ванны, не успевает выделиться и за­держивается в металле. В результа­те в наплавке могут образоваться поры.

Если электродная проволока со­держит кремний и марганец, то окис­лы железа раскисляются не за счет углерода с образованием СО, а за счет более лучших раскислителей из проволоки 8  и Мn. Это предотвраща­ет образование пор. Раскисление окислов железа идет по реакциям: 2FеО + Si=SiO,,+2Fе и FеО+Мn=МnО + Fе.

Образующиеся в процессе раскисления окислы кремния и марганца всплывают и скапливаются на поверхности сварочной ванны в виде шлаков.

Сварочные материалы, используе­мые для сварки и наплавки в среде углекислого газа, это — электрод­ные проволоки, содержащие раскис­лители Св-0,8ГС, Св-08Г2С, Св-10ГС, СВ-18ХГС, Нп-ЗОХГСА, ПП-АН4, ПП-АН5, ПП-АН8, ПП-ЗХ2В8Т и др. Сварка(наплавка)электродной про­волокой, которая не содержит доста­точного количества раскислителей 31 и Мn и происходит с большим содер­жанием углерода, сопровождается значительным разбрызгиванием рас­плава, в наплавленном металле на­блюдается пористость, повышается опасность образования трещин.

Промышленное производство уг­лекислого газа основано на его извле­чении из газов, образующихся при взаимодействии серной кислоты и ме­ла, при обжиге известняка (около 40 % добычи СО2), сжигании кокса и антрацита в специальных топках (до 18 % СО2) из дымовых газов котель­ных установок (до 12 % СО2) и пр.

Углекислый газ при атмосферном давлении может находиться либо в газообразном состоянии, либо в твер­дом при температуре ниже —78,9 °С (сухой лед). В жидкое состояние угле­кислоту переводят при повышенном давлении. Для сварки и наплавки на­иболее удобна ее поставка в виде жидкости.

При испарении 1 л жидкой угле­кислоты при температуре О °С и ат­мосферном давлении получается 506,8л газа. В стандартный баллон с водяной вместимостью 40 л заливает­ся 25 кг жидкой углекислоты, кото­рая при нормальном давлении зани­мает 67,5 % объема баллона и дает при испарении около 12,5 м3 газа. В верхней части баллона вместе с газо­образной углекислотой скапливает­ся воздух. Вода как более тяжелая, чем жидкая углекислота, собирается в нижней части баллона.

Для сварки и наплавки углекис­лый газ поставляется по соответству­ющим техническим условиям, хотя после дополнительной очистки можно пользоваться и пищевой углекис­лотой.

При использовании пищевой угле­кислоты в баллонах для удаления примесей воздуха рекомендуется пе­ред сваркой выпускать первые пор­ции газа в атмосферу, а Затем после отстаивания баллона в перевернутом положении (вентилем вниз) слить во­ду, осторожно открывая вентиль. По­сле удаления воды и первых загряз­ненных объемов газовой фазы такая пищевая углекислота дает удовлет­ворительные результаты при сварке и наплавке.

На крупных ремонтных заводах ор­ганизовано централизованное снаб­жение углекислым газом сварочных постов из стационарных вместимостей большого объема. При такой схе­ме газораспределения жидкая угле­кислота доставляется потребителю в специальных цистернах и затем пере­ливается в эти вместимости. По спе­циальным трубопроводам пары угле­кислоты поступают на рабочие по­сты.

Оборудование для сварки и на­плавки в среде углекислого газа — это серийно выпускаемые комплек­ты (рис. 7.10) различных конструк­ций: А-547-У, А-547-Р, А-577-У, А-929, ПДПГ-30, аппараты советско-авст­рийского производства "Варио-Стар".

На ремонтных предприятиях наи­более широко используется полуав­томат А-547-У, который обеспечивает качественную сварку металла тол­щиной 0,8 — 4,0 мм. Диаметр приме­няемой электродной проволоки мо­жет изменяться в широких пределах от 0,6 до 1,2 мм при скорости ее пода­чи 140 — 600 м/ч. Номинальный сва­рочный ток — 300 А. В качестве ис­точника питания используется сва­рочный селеновый выпрямитель ВС-300.

Сварочный аппарат А-577-У позво­ляет использовать электродную про­волоку диаметром 1,6 — 2 мм при скорости ее подачи 80 — 600 м/ч. Но­минальный сварочный ток питания дуги — 500 А.

Рис. 7.16. Схема установки для сварки (наплав­ки) в среде СО2:

1 — баллон с углекислым газом; 2 — осушитель; 3 — подогреватель газа; 4 -- газовый редуктор; 5 — расходомер газе;6 — клапан; 7 — электромагнит; 8 — аппаратный ящик; 9 — механизм подачи проволоки; 10 — горелка; 11 — восстанавливаем а и деталь; 12 — источник тока

При выходе из баллона углекис­лый газ резко расширяется и переох­лаждается. При определенном рас­ходе газа его температура снижается до такой степени, что может произой­ти замерзание влаги в газопроводах. Это приводит к прекращению досту­па газа в горелку и соответственно в зону сварки. Для предотвращения закупорки газопроводов углекислый газ подогревают при помощи специ­ального устройства — подогревателя газа (рис. 7.11).

Подогреватель газа присоединяет­ся к вентилю баллона при помощи на­кидной гайки. Углекислый газ после открытия вентиля проходит по змее­вику и нагревается от спирали, пита­емой электрическим током напряже­нием 36 В. Подогретый газ выходит через штуцер и поступает в понижаю­щий редуктор.

Для удаления влаги из углекисло­го газа используют осушитель (рис. 7.12). В качестве поглотителя влаги, как правило, используют силикагель.

Режимы сварки и наплавки во м но­гой определяют качество деталей, восстановленных сваркой или на­плавкой. К основным параметрам сварки или наплавки в СО2 относят­ся: сила сварочного тока, напряже­ние питания дуги, диаметр, вылет и скорость подачи электродной прово­локи, скорость сварки, расход угле­кислого газа.

Сварочный ток и диаметр электродной проволоки находятся в зави­симости от толщины свариваемого металла ,и наплавки, числа слоев шва, химического состава наплавляемой детали, В зависимости от сва­рочного тока, напряжения питания дуги, диаметра и состава проволоки выбирают скорость подачи электрод­ной проволоки с таким расчетом, чтобы обеспечить устойчивое горение ду­ги. Следует использовать источники питания с жесткой внешней характе­ристикой: ПСГ-500-1, ПСУ-500, ВС-300, ВДГ-301, ВДГ-502, ВСЖ-303 и др.

Вылет электрода должен быть в пределах 8 — 15 мм и зависит от удельного электрического сопротив­ления электродной проволоки, ее ди­аметра, силы тока. Расход углекис­лого газа, достаточный для защиты зоны сварки от азота воздуха, состав­ляет 7— 10 л/мин. С возрастанием плотности сварочного тока расход га­за должен увеличиваться.

В практике ремонтного производ­ства режимы сварки (наплавки) мож­но определить по типовым таблицам режимов. Например, в табл. 7.9 при­ведены режимы сварки тонколисто­вой стали в зависимости от толщины свариваемого металла, а в табл. 7.10 — режимы наплавки цилиндри­ческих поверхностей в зависимости от диаметра детали и толщины слоя наплавки.

Механизированную наплавку при­меняют для восстановления деталей диаметром 10 — 30 мм, а также для наплавки глубоких отверстий, когда трудно применить другие способы.

В авторемонтном производстве сварка в среде СО2 является незаме­нимым способом восстановления рам, кабин и кузовов. Наплавкой вос­станавливают десятки наименований деталей: гладкие и шлицевые участки валов, вилки переключения коробок передач, сошки рулевого управления и пр. За период 1985 — 1990 гг. элек­тродуговой сваркой (наплавкой) в среде СО2 было восстановлено около 20 % от всего объема, поступивших в ремонт деталей.

Аргонно-дуговая сварка и наплав­ка. Свойства некоторых металлов и сплавов заметно ухудшаются при воздействии на них при высоких тем­пературах кислорода, а в отдельных случаях азота и водорода. Для иск­лючения такого вредного воздейст­вия применяют сварку в инертных га­зах. Защиту реакционного сварочно­го пространства в этих случаях осуществляют либо струей защитного инертного газа, оттесняющего воздух из зоны горения дуги, либо проведе­нием сварки в специальных камерах с созданием в них атмосферы требуе­мого состава.

Таблица 7.9. Типовые режимы сварки в СО2 тонколистовой стали

Наиболее универсальным защит­ным газом является аргон. В ряде случаев к инертному газу для улучшения устойчивости дугового разря­да, формирования шва, повышения производительности добавляют раз­личные активные газы.


Таблица 7.10. Режимы наплавки цилиндрических поверхностей в зависимости от диаметра детали и толщины наплавленного шара металла

Для восстановления автомобиль­ных деталей сварка в смеси инертных и активных газов не используется и поэтому в данном учебнике не рас­сматривается.

Благодаря надежной защите рас­плавленного металла от вредного воздействия кислорода и азота воздуха при аргонно-дуговой сварке появ­ляются возможности восстановления деталей из трудносвариваемых мате­риалов, в том числе алюминия и его

сплавов, бронзы, латуни, нержавею­щих сталей и прочих материалов. В ремонтном производстве сварка с за­щитой аргоном наиболее широко ис­пользуется для восстановления авто­мобильных деталей из алюминия и его сплавов.

При сварке и наплавке деталей из алюминия и его сплавов возникают серьезные трудности, связанные с на­личием на поверхности деталей туго­плавкой окисной пленки, температу­ра плавления которой 2050 °С. Плот­ная, механически прочная пленка окислов не позволяет соединить сва­риваемые части детали, так как тем­пература плавления самого алюми­ния значительно ниже и составляет 660 °С. Коэффициент линейного рас­ширения алюминия в 2, а теплопро­водность в 3 раза больше в сравнений со сталью, что приводит к значитель­ным деформациям свариваемых (на­плавляемых) деталей. Кроме того, при нагревании алюминий и его сплавы не изменяют своего цвета, а в расплавленном состоянии имеют боль­шую жидкотекучесть, что затрудняет формирование сварочного шва или наплавляемого металла.

Аргонно-дуговая сварка осуществ­ляется неплавящимся или плавя­щимся электродами. При восстанов­лении используется в основном свар­ка неплавящимся вольфрамовым электродом с ручной или механиче­ской подачей присадочного материа­ла в зону горения дуги (рис. 7.13).

Сварочные материалы, используе­мые при этом виде сварки, — это вольфрамовые электроды, присадоч­ный материал и газ. При сварке не­плавящимся электродом последний не должен участвовать в формирова­нии состава наплавленного металла или металла шва. Основной задачей неплавящихся электродов является обеспечение устойчивого горения ду­ги при минимальном их расходова­нии.

Наибольшее распространение в качестве неплавящихся электродов получили вольфрамовые стержни. Такие электроды имеют необходи­мую электропроводность, высокую механическую прочность, что позво­ляет их использовать в виде стержней малого диаметра. Температура плав­ления наиболее тугоплавкого из ме­таллов — вольфрама — равна 3377 °С,

а температура его кипения около 4700 °С. Такие свойства обеспечива­ют неплавящимся электродам высо­кую стойкость.

Электроды изготавливаются из по­рошка вольфрама прессованием, спеканием и последующей проков­кой, что приводит к свариванию час­тиц между собой. Затем из таких за­готовок получают волочением элект­родные стержни требуемого диамет­ра.

Неплавящиеся электроды из воль­фрама относятся к дорогостоящим и дефицитным сварочным материа­лам. Поэтому при сварке вольфрамо­выми электродами необходимо вы­полнять определенные условия для снижения расхода вольфрама в про­цессе горения дуги. Так усиливается расходование электродов в результа­те плавления вследствие образова­ния на их торце более легкоплавких сплавов вольфрама с составляющи­ми свариваемого металла. Эти со­ставляющие попадают на торец элек­трода как в результате прямого кон­такта электрода со свариваемым из­делием при коротком замыкании во время зажигания дуги, так и в резуль­тате конденсации паров и попадании капель из сварочной ванны на торец электрода. Поэтому обычно стремят­ся исключить контакт электрода с из­делием при зажигании дуги. Зажига­ние выполняют на дополнительной графитовой пластине или наложени­ем в момент зажигания на дуговой промежуток высокого напряжения большой частоты, вызывающего про­бей межэлектродного пространства без контакта. Для облегчения воз­буждения дуги неплавящийся элект­род должен содержать вещества с малой работой выхода электронов. Хорошие результаты дает добавка в порошок вольфрама перед прессова­нием двуокиси тория (ТНО2) в количе­стве 1,5 — 2 %. Такие тарированные электроды марки ВТ-15 значительно более стойки против оплавления тор­ца.

В последние годы разработаны и широко используются лантанированные и иттрированные вольфрамовые электроды, обладающие высокими служебными свойствами. Такие электроды по стойкости превосходят тарированные. Ориентировочные нормы расхода вольфрамовых элект­родов при аргонно-дуговой сварке приведены в табл. 7.11.

В качестве присадочного материа­ла используют прутки, проволоку, по­лосу из того же алюминиевого спла­ва, что и свариваемый (наплавляе­мый) материал, либо применяют электродную проволоку, содержа­щую кремний Св-АК5, Св-АК10, Св-АК12 и др. (табл. 7.12).

Инертный газ аргон получают из воздуха методом ректификации в специальных разделительных колон­ках. Полученный таким образом "сы­рой" аргон содержит значительное количество примесей, в частности кислорода. Дальнейшая его очистка осуществляется беспламенным сое­динением кислорода с добавляемым водородом в присутствии катализа­торов. В чистом аргоне в качестве примесей остается небольшое коли­чество азота, кислорода и влаги. В табл. 7.13 приведены составы различ­ных сортов аргона (А, Б, В), поставля­емых для сварки.

Аргон сорта А предназначен для сварки химически активных метал­лов (титана, циркония, ниобия), спла­вов на их основе, а также для сварки алюминиевых сплавов плавящимся электродом. Аргон сорта Б использу­ется для сварки неплавящимся электродом сплавов алюминия, магния и других материалов, чувствительных к примесям кислорода и азота. Аргон сорта В применяют для сварки не­ржавеющих сталей различных клас­сов.

Аргон, являясь более тяжелым, чем воздух, своей струей лучше защи­щает металл при сварке в нижнем по­ложении. Растекаясь по поверхности свариваемого изделия, он защищает достаточно длительное время широ­кую и протяженную зону как рас­плавленного, так и нагретого при сварке металла.


Таблица 7.12. Составы электродных проволок для сварки (наплавки) деталей из алюми­ния и его сплавов

Аргон поставляется в баллонах, в которые он нагнетается под давлением 15 МПа. Для исключения попада­ния воздуха и влаги в баллоны их за­прещается использовать до полного снижения избыточного давления. При, наличии остаточного давления, равного 0,3 — 0,5 МПа, попадание в баллон влаги и воздуха маловероят­но, и при последующем наполнении аргон будет иметь требуемую чисто­ту. Оборудование, режимы и техника сварки, применяемые при аргонно-дуговой сварке, во многом определя­ют качество восстановленных дета­лей. Для восстановления автомо­бильных деталей из алюминия и его сплавов используют специальные ус­тановки УДГ-301, УДГ-501,-УДАР-

500, работающие на переменном то­ке. Техническая характеристика пер­вых двух Приведена в табл. 7.14.

Для аргонно-дуговой сварки в за­висимости от силы сварочного тока, диаметра неплавящегося электрода используют различные горелки с во­дяным и естественным охлаждением (табл. 7.15). Режимы аргонно-дуговой сварки алюминия и его сплавов опре­деляются в первую очередь толщиной соединяемых металлов. При выборе режимов сварки можно руководство­ваться табл. 7.16.

Аргонно-дуговую сварку выполня­ют наклонной горелкой углом вперед, угол наклона к поверхности изделия составляет 70 — 80°, а присадочную проволоку подают под углом 10 — 30° (см. табл. 7.13). Дуга возбуждает­ся замыканием электрода и металла угольным стержнем или кратковре­менным разрядом высокой частоты при помощи осциллятора. Диаметр отверстия сопла горелки должен соответствовать диаметру вольфрамо­вого электрода.

По окончании сварки дугу обрыва­ют постепенно для заварки кратера. Это осуществляют при ручной сварке постепенным растяжением дуги, а при автоматической — специальным устройством заварки кратера, обес­печивающим плавное уменьшение сварочного тока. Длина сварочной дуги при сварке алюминия должна быть в пределах 1,5 — 3 мм, а ее диа­метр должен составлять 0,8— 1,5 ди­аметра электрода.

В ремонтном производстве исполь­зуют для восстановления алюминие­вых деталей аргонно-дуговую сварку плавящимся электродом. Сварка происходит с капельным и струйным переносом, С повышением тока ка­пельный перенос металла электрод­ной проволоки сменяется струйным, и глубина проплавления увеличива­ется. Критическое значение тока, при котором капельный перенос сменяет­ся струйным, составляет при сварке алюминия 70 А.

Наиболее высокое качество сварки и наплавки плавящимся электродом обеспечивает гамма универсальных сварочных полуавтоматов "Варио-Стар" производства СП "Фрониус-Факел". Компактные сварочные полуав­томаты обеспечивают высококачест­венную сварку как стальных (защит­ный газ СО2), так и алюминиевых (за­щитный газ аргон) автомобильных деталей. Техническая характеристи­ка полуавтоматов "Варио-Стар" для сварки и наплавки плавящимся элек­тродом приведена в табл. 7.17. Полу­автоматы "Варио-Стар" имеют ши­рокий диапазон регулирования сва­рочного тока, напряжения и скорости подачи электродной проволоки (1 — 22 м/мин) и надежное электронное управление.

Таблица 7.17. Техническая характеристика полуавтоматов для сварки и наплавки

Сварку и наплавку в среде аргона используют при восстановлении бло­ков цилиндров из алюминиевых спла­вов двигателей автомобилей ГАЗ-24-10, УАЗ-469А, ГАЗ-53, картера сцеп­лений и других деталей. В качестве примера рассмотрим технологию ус­транения характерных дефектов в блоке цилиндров двигателя автомо­биля УАЗ-469. При поступлении в ре­монт блок цилиндров (материал — алюминиевый сплав АЛ-4) часто име­ет дефекты в виде пробоин и трещин на стенках, обломы на фланцах креп­ления картера сцепления, масляного картера и на плоскости крепления го­ловки блока, которые устраняются аргонно-дуговой сваркой.

Пробоины на стенках, не захваты­вающие перегородки, ребра жестко­сти и масляные каналы устраняют постановкой заплат, которые выреза­ют из листового алюминия АМЦ тол­щиной 1,5 — 2 мм. Затем на кромках пробоины снимают фаски таким об­разом, чтобы зазор в стыке с заготов­ленной заплатой и кромками пробои­ны был не более 2 — 3 мм. Блок уста­навливают на кантователь ОБ-2001 для выполнения сварки. Металличе­ской щеткой зачищают края пробои­ны и заплаты на ширине 15 — 20 мм и обезжиривают уйатспиритом или ацетоном. Приваривают заплату в четырех-пяти точках, после чего при­варивают по всему периметру на ус­тановке Удар-500, Удар-300 или УДГ-301 для аргонно-дуговой сварки деталей.

Для сварки используют вольфра­мовый электрод марки ВА-1А или ВП-1 диаметром 4 — 5 мм, выходное сопло для аргона диаметром 9—12 мм, присадочный пруток из проволоки АЛ-4 диаметром 4 — 5 мм. Режим ра­боты: сила тока — 180 — 250 А, рас­ход аргона — 8—11 л/мин, давле­ние — 0,02 — 0,04 МПа, полярность — обратная.

Шов зачищают металлической щеткой, промывают горячей водой или содовым раствором. Качество сварки проверяют внешним осмот­ром и при наличии раковин или пор места, имеющие дефекты, перевари­вают.

Испытание блока на герметич­ность проводят на стенде АКТБ-169 под давлением 0,2 — 0,3 МПа в тече­ние 2 мин; при этом течь и отпотевание сварных швов не допускают. При приварке заплат и заварке пробоин, не захватывающих рубашку охлаж­дения, проверять герметичность можно керосином. При этом появле­ние пятен керосина на поверхностях, покрытых меловым раствором, не до­пускается.

Трещины на стенках блоков цилин­дров, не проходящие через масляные каналы и не выходящие на резьбовые отверстия шпилек поршневых под­шипников, заваривают. Для этого разделывают трещину под углом 90° на глубину 3 — 4 мм по всей длине, применяя пневматическую шлифо­вальную машинку ИП-2009А и торцо­вую фрезу. Затем поворачивают блок

Информация в лекции "Стратегии туроперейтинга на туристическом рынке" поможет Вам.

в положение, удобное для сварки, за­чищают металлической щеткой по­верхность вдоль трещины по ширине 25 — 30 мм, обезжиривают зачищен­ную поверхность уйатспиритом или ацетоном и заваривают трещину по всей длине аргонно-дуговой сваркой, ведя ее от середины к концам трещи­ны. Заварку отверстий на концах тре­щины осуществляют после заварки трещины с усилением шва на 2—3 мм.

В процессе сварки блок поворачи­вают, обеспечивая нижнее положе­ние сварочного шва. Способ сварки, режим очистки шва и проверка на герметичность, а также используе­мое оборудование те же, что для уст­ранения пробоин.

Обломы на фланцах крепления картера сцепления масляного карте­ра и на плоскости крепления головки блока устраняют двумя способами.

Первый способ — приварка при­ставок, отрезанных из списанных блоков. Для определения формы и размера приставки обрубают зуби­лом неровные края облома. Отреза­ют ножовочным станком приставку из части списанного блока и подгоня­ют ее при помощи напильника к бло­ку с обломом для приварки встык. За­зор между приставкой и краями об­лома не дол жен превышать 2 — Змм.

С наружной стороны облома и при­ставки под углом 45° делают фаски на глубину 3 — 4 мм и зачищают ме­таллической щеткой поверхность вдоль краев облома и приставки по ширине 20 — 25 мм. Обезжиривают зачищенную поверхность уайтспи­ритом или ацетоном. Прихватывают приставку в трех-четырех местах и приваривают аргонно-дуговой свар­кой, начиная с мест, наиболее доступ­ных для работы, с усилением шва на 3 — 4 мм, В процессе сварки блок по­ворачивают, обеспечивая нижнее по­ложение сварочного шва. Используе­мое оборудование, режим сварки, очистки шва и проверка на герметич­ность указаны в дефекте для устране­ния пробоин на стенках блока.

Второй способ — наплавка обло­мов по формующим шаблонам. Для наплавки наиболее часто встречаю­щихся обломов изготавливаются стальные формующие шаблоны, вос­полняющие обломанную часть блока. Устанавливают шаблон на блок и на­плавляют по нему место облома. Вы­держивают блок до полного охлажде­ния наплавленного металла и снима­ют шаблон. Используемое оборудо­вание, режим сварки, очистки шва и проверка на герметичность анало­гичны первому способу.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее