Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ

Кристаллизация металлов

2021-03-09СтудИзба

Лекция 4

Кристаллизация металлов

Переход металла из жидкого или па­рообразного состояния в твердое с образованием кристаллической струк­туры называется первичной кристалли­зацией. Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией.

Процесс кристаллизации состоит из двух одновременно идущих процес­сов - зарождения и роста кристаллов. Кристаллы могут зарождаться самопро­извольно (самопроизвольная кристалли­зация) или расти на имеющихся го­товых центрах кристаллизации (несамо­произвольная кристаллизация).

Самопроизвольная кристаллизация

Самопроизвольная кристаллизация обусловлена стремлением вещества иметь более устойчивое состояние, ха­рактеризуемое уменьшением термо­динамического потенциала G.  С повышением температуры термо­динамический потенциал вещества как в твердом, так и в жидком состоянии уменьшается, что показано на рисунке.

Изменение термодинамического по­тенциала в зависимости от температуры для металла в твердом и жидком состояниях

Температура, при которой термодина­мические потенциалы вещества в твер­дом и жидком состояниях равны, назы­вается равновесной температурой кри­сталлизации. Кристаллизация происхо­дит в том случае, если термодинамиче­ский потенциал вещества в твердом состоянии будет меньше термодинами­ческого потенциала вещества в жидком состоянии, т. е. при переохлаждении жидкого металла до температур ниже равновесной. Плавление - процесс, об­ратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Разница между реальны­ми температурами плавления и кристаллизации называется температурным ги­стерезисом.

Поскольку жидкий металл с прису­щим ему ближним порядком в располо­жении атомов обладает большей вну­тренней энергией, чем твердый со струк­турой дальнего порядка, при кристалли­зации выделяется теплота. Между те­плотой  и температурой кристаллиза­ции Тк существует определенная связь. Так как при равновесной температуре кристаллизации термодинамические по­тенциалы в жидком и твердом состоя­ниях равны, то


 =>    => 

Рекомендуемые материалы

Параметр ΔS = Q/TK характеризует упорядоченность в расположении ато­мов при кристаллизации. В зависимости от сил межатомной связи теплота кри­сталлизации для различных металлов изменяется от 2500 Дж/моль (Na, К и др.) до 20000 Дж/моль (W и др.).

Ког­да кристаллизуется чистый элемент, от­вод теплоты, происходящий вследствие охлаждения, компенсируется теплотой кристаллизации. В связи с этим на кри­вой охлаждения, изображаемой в коор­динатах температура-время, процессу кристаллизации соответствует горизон­тальный участок:

Кривые охлаждения металла

При боль­шом объеме жидкого металла выделяю­щаяся при кристаллизации теплота повышает температуру практически до равновесной (кривая а); при малом объеме металла выделяющейся теплоты недостаточно, вследствие чего кристаллизация происходит с переохлаждением по сравнению с равновесной температурой (кривая б).

Разница между равновесной (Ts) и ре­альной (Тn) температурой кристаллиза­ции называется степенью переохлажде­ния ΔT. Степень переохлаждения зави­сит от природы металла. Она увеличи­вается с повышением чистоты металла и с ростом скорости охлаждения. Обыч­ная степень переохлаждения металлов при кристаллизации в производственных условиях колеблется от 10 до 30 °С; при больших скоростях охлажде­ния она может достигать сотен граду­сов.

Степень перегрева при плавлении ме­таллов, как правило, не превышает не­скольких градусов.

В жидком состоянии атомы вещества вследствие теплового движения переме­щаются беспорядочно. В то же время в жидкости имеются группировки ато­мов небольшого объема, в пределах ко­торых расположение атомов вещества во многом аналогично их расположе­нию в решетке кристалла. Эти группи­ровки неустойчивы, они рассасываются и вновь появляются в жидкости. При переохлаждении жидкости некоторые из них, наиболее крупные, становятся ус­тойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (заро­дышами). Образованию зародышей спо­собствуют флуктуации энергии, т. е. от­клонения энергии группировок атомов в отдельных зонах жидкого металла от не­которого среднего значения. Размер образовавшегося зародыша зависит от величины зоны флуктуации.

Появление центров изменяет термо­динамический потенциал системы ΔGобщ. С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал уменьша­ется на VΔGυ (G1), с другой стороны, он увеличивается вследствие появления по­верхности раздела между жидкостью и кристаллическим зародышем на величину, равную Sσ (G2):

ΔGобщ. = - VΔGυ + Sσ



где V-объем зародыша; S-поверх­ность зародыша; σ-удельное поверхностное натяжение на границе кристалл-жидкость; ΔGυ-удельная разность термодинамиче­ских потенциалов при переходе жидко­сти в кристаллическое состояние.

Изменение термодинамического по­тенциала при образовании зародышей в за­висимости от их размера

Если принять, что зародыш имеет форму куба с ребром А, то общее изме­нение термодинамического потенциала

ΔGобщ. = A3ΔGυ + 6A2 σ


Отсюда следует, что графи­ческая зависимость изменения термо­динамического потенциала от размера зародыша имеет максимум  при некотором значении А, названном кри­тическим. Зародыши с размером боль­ше критического вызывают уменьшение ΔGобщ. и поэтому являются устойчивы­ми, способными к росту. Зародыши, имеющие размер меньше критического, нестабильны и растворяются в жидко­сти, поскольку вызывают увеличение ΔGобщ.

                        


    =>     =>  

Скорость процесса и окончательный размер кристаллов при затвердевании определяются соотношением скоростей роста кристаллов и образования цен­тров кристаллизации. Скорость образо­вания зародышей измеряется числом зародышей, образующихся в единицу времени в единице объема; скорость роста - увеличе­нием линейного размера растущего кри­сталла в единицу времени. Оба процесса связаны с перемещениями ато­мов и зависят от температуры. Графи­ческая зависимость скорости образова­ния зародышей и скорости их роста от степени переохлаждения представлена на рисунке.

Изменение скорости образования зародышей (с. з.) и скорости роста кристаллов (с. р.) в зависимости от степени переохлаждения

Для металлов, которые в обычных ус­ловиях кристаллизации не склонны к большим переохлаждениям, как пра­вило, характерны восходящие ветви кривых. Это значит, что при равновес­ной температуре, когда степень переох­лаждения равна нулю, скорость образо­вания зародышей и скорость роста также равны нулю, т. е. кристаллизации не происходит. При небольших степенях переохлаждения, когда велик зародыш критического размера, а скорость обра­зования зародышей мала, при затверде­вании формируется крупнокристаллическая структура. Небольшие степени переохлаждения достигаются при залив­ке жидкого металла в форму с низкой теплопроводностью (земляная, шамото­вая) или в подогретую металлическую форму. Увеличение переохлаждения происходит при заливке жидкого метал­ла в холодные металлические формы, а также при уменьшении толщины стенок отливки. Поскольку при этом ско­рость образования зародышей увеличи­вается более интенсивно, чем скорость их роста, получаются более мелкие кристаллы.

Несамопроизвольная кристаллизация

В реальных условиях процессы кри­сталлизации и характер образующейся структуры в значительной мере зависят от имеющихся готовых центров кри­сталлизации. Такими центрами, как пра­вило, являются тугоплавкие частицы не­металлических включений, оксидов, ин­терметаллических соединений, обра­зуемых примесями. К началу кристалли­зации центры находятся в жидком ме­талле в виде твердых включений. При кристаллизации атомы металла от­кладываются на активированной по­верхности примеси, как на готовом за­родыше. Такая кристаллизация назы­вается несамопроизвольной или гетеро­генной. При несамопроизвольной кри­сталлизации роль зародышей могут играть и стенки формы.

Наличие готовых центров кристалли­зации приводит к уменьшению размера кристаллов при затвердевании. Эф­фект измельчения структуры значитель­но увеличивается при соблюдении структурного и размерного соответствия при­месной фазы с основным металлом, ко­торое способствует сопряжению их кри­сталлических решеток.

В жидком металле могут присутство­вать и растворенные примеси, которые также вызывают измельчение струк­туры. Адсорбируясь на поверхности за­рождающихся кристаллов, они умень­шают поверхностное натяжение на гра­нице раздела жидкость - твердая фаза и линейную скорость роста кристаллов. Это спо­собствует уменьшению Акр и появлению новых зародышей, способных к росту. Примеси, понижающие поверхностное натяжение, называют поверхностно-ак­тивными.

Получение монокристаллов

Большое научное и практическое значение имеют монокристаллы. Монокристаллы отличаются минимальными структурными не­совершенствами. Получение монокристаллов позволяет изучать свойства металлов, ис­ключив влияние границ зерен. Применение в монокристаллическом состоянии германия и кремния высокой чистоты дает возмож­ность использовать их полупроводниковые свойства и свести к минимуму неконтроли­руемые изменения электрических свойств.

Монокристаллы можно получить, если создать условия для роста кристалла только из одного центра кристаллизации. Суще­ствует несколько методов, в которых исполь­зован этот принцип. Важнейшими из них являются методы Бриджмена и Чохральского.

Метод Бриджмена (рис. а) состоит в следующем: металл, помещенный в тигель с коническим дном 3, нагревается в верти­кальной трубчатой печи 1 до температуры на          50-100 °С выше температуры его плавления. Затем тигель с расплавленным метал­лом 2 медленно удаляется из печи. Охлажде­ние наступает в первую очередь в вершине конуса, где и появляются первые центры кристаллизации. Монокристалл 4 вырастает из того зародыша, у которого направление преимущественного роста совпадает с напра­влением перемещения тигля. При этом рост других зародышей подавляется. Для не­прерывного роста монокристалла необходи­мо выдвигать тигель из печи со скоростью, не превышающей скорость кристаллизации данного металла.


Схемы установок для выращивания монокристаллов

Метод Чохральского (рис. б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 - небольшой образец, вырезанный из моно­кристалла по возможности без структурных дефектов. Затравка вводится в поверх­ностный слой жидкого металла 4, имеющего температуру чуть выше температуры плавле­ния. Плоскость затравки, соприкасающаяся с поверхностью расплава, должна иметь кри­сталлографическую ориентацию, которую желательно получить в растущем монокри­сталле 3 для обеспечения наибольших значе­ний тех или иных свойств. Затравку выдер­живают в жидком металле для оплавления и установления равновесия в системе жид­кость-кристалл. Затем затравку медленно, со скоростью, не превышающей скорости кристаллизации, удаляют из расплава. Тянущийся за затравкой жидкий металл в области более низких температур над поверхностью ванны кристаллизуется, наследуя структуру затравки. Для получения симметричной формы растущего монокри­сталла и равномерного распределения при­месей в нем ванна 5 с расплавом вращается со скоростью до 100 об/мин, а навстречу ей с меньшей скоростью вращается монокри­сталл.

Диаметр растущего монокристалла зави­сит от скорости выращивания и темпера­туры расплава. Увеличение скорости выра­щивания ведет к выделению большей те­плоты кристаллизации, перегреву расплава и уменьшению диаметра монокристалла, и, наоборот, уменьшение скорости выращива­ния приводит к уменьшению количества те­плоты кристаллизации, понижению темпера­туры расплава и увеличению диаметра моно­кристалла.

Аморфное состояние металлов

При сверхвысоких скоростях охлажде­ния из жидкого состояния диффузионные процессы настолько за­медляются, что подавляется образова­ние зародышей и рост кристаллов. В этом случае при затвердевании обра­зуется аморфная структура. Материалы с такой структурой получили название аморфные сплавы или металлические стекла.

Аморфное состояние обеспечивает ме­таллическим материалам свойства, зна­чительно отличающиеся от свойств со­ответствующих материалов с кристал­лической структурой. Так, аморфные магнитомягкие материалы характери­зуются прямоугольной петлей гистере­зиса, высокой магнитной проницае­мостью и очень малой коэрцитивной силой. При этом магнитные свойства материала малочувствительны к меха­ническим воздействиям на него.  

Полу­чены аморфные материалы и с высокой магнитной энергией. Удельное электри­ческое сопротивление аморфных метал­лических материалов в 2 — 3 раза выше, чем у аналогичных сплавов с кристалли­ческой структурой. Аморфные металли­ческие материалы удачно сочетают вы­сокие прочность, твердость и износо­стойкость с хорошей пластичностью и коррозионной стойкостью. Большое практическое значение имеет также и возможность получения аморфных металлов в виде ленты, проволоки диа­метром несколько микрометров непос­редственно при литье, минуя такие до­рогостоящие операции, как ковка, про­катка, волочение, промежуточные отжи­ги, зачистки, травление.

На рисунке показана связь ха­рактерных графиков изменения свобод­ной энергии возможных фаз при трех определенных температурах t1, t2, t3 с диаграммой состояния. При температуре t2 между точками а и b в термо­динамическом равновесии сосуще­ствуют две фазы: жидкий раствор со­става ха и твердый раствор состава xb. Значения свободных энергий этих рас­творов соответствуют точкам a' и b'. Для более точного построения линий ликвидус и солидус необходимо иметь несколько графиков для интервала тем­ператур между t1и t3.

"RISC-архитектура. Суперскалярная обработка" - тут тоже много полезного для Вас.

Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях

Полиморфизм

Ряду веществ свойственны не одна, а две и более структур, устойчивых при различных температурах и давлениях. Такие структуры называются полиморфными мо­дификациями, или полиморфными формами. Полиморфные модификации принято обозначать греческими буквами. Модификацию, устой­чивую при низких температурах, обозначают буквой α, а при более высоких - β. Полиморфизм  весьма распространенное явление.

Железо, титан, кобальт, олово, углерод, сегнетоэлектрики, кварц и многие другие материалы могут сущест­вовать в различных полиморфных модификациях.

Естественно, полиморфные, модификации отличаются между собой не только структурой, но и свойствами. Например, α-олово, устойчивое ниже 13° С, является хрупким полупроводником, а β-олово— весьма вязкий металл.

При полиморфизме особо резкие изменения свойств наблюда­ются при изменении не только структуры, но и типа химической.

Полиморфизм играет в материаловедении и технологии важ­ную практическую роль. Переводя материал из одной поли­морфной модификации в другую, можно управлять его свойст­вами. Например, практически освоено получение алмазов из графита нагревом его под давлением 100000 атм. до температур примерно 2000° С.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее