Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Лекции по материаловедению и ТКМ » Механические свойства материалов

Механические свойства материалов

2021-03-09СтудИзба

Лекция 3

Механические свойства материалов

Из всех свойств, которыми обладают твердые тела, наиболее харак­терными являются механические свойства — прочность, твердость, пластичность, износостойкость и др. Именно благодаря этим свойст­вам твердые тела получили столь широкое практическое применение в качестве конструкционных, строительных, электротехнических, маг­нитных и других материалов, без которых немыслимо развитие мате­риального производства. Рассмотрим некоторые из этих свойств.

Диаграмма растяжения


При действии на тело внешней растягивающей силы оно растягивается, и этот процесс отражается на диаграмме растяжения.

Различают относительное и абсолютное удлинение:


1. Относительное


2. Абсолютное


Рекомендуемые материалы

            При этом материал испытывает механическое напряжение

Связь абсолютного удлинения и механического


 


 



удлинения отражается в законе Гука                             или 

где k – коэффициент податливости,  - коэффициент упругости (модуль Юнга)

Зона ОА носит название зоны упругости (). Здесь материал под­чиняется закону Гука. На   рисунке   этот   участок  для большей наглядности показан с отступлением от масштаба. Удли­нения на  участке ОА  очень малы, и прямая ОА, будучи вы­черченной в масштабе, совпадала с осью ординат. Величина силы, для которой остается справедли­вым закон Гука, зависит от размеров образца и физических свойств материала. Для высококачественных   сталей   эта   величина имеет большее значение. Для таких металлов, как медь, алюминий, сви­нец,   она  оказывается  в  несколько  раз  меньшей.

Зона АВ называется зоной общей текучести, а участок АВ диаграммы — площадкой текучести. Здесь происходит существен­ное изменение длины образца без заметного увеличения нагрузки. Наличие площадки текучести для металлов не является харак­терным. В большинстве случаев при испытании на растяжение и сжатие площадка АВ не обнаруживается.


Зона ВС называется зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более мед­ленным (в сотни раз), чем на упругом участке. В стадии упрочнения на образце намечается место будущего разрыва и начинает образо­вываться так называемая шейка — местное сужение образца.

По мере растяжения об­разца утонение шейки прогрессирует. Когда от­носительное уменьшение площади сечения срав­няется с относительным возрастанием напряже­ния, сила достигнет максимума. В дальнейшем удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шей­ки и возрастает. Удлинение образца носит в этом случае местный характер, и поэтому участок кривой CD называется зоной местной текучести. Точка D соответствует разрушению образца. У многих материалов разрушение происходит без заметного образования шейки.

Если испытуемый образец, не доводя до разрушения, разгру­зить, то в процессе разгрузки зависимость между силой и удлинением изобразится прямой KL. Опыт показывает, что эта прямая параллельна прямой ОА. При разгрузке удлинение полностью не исчезает. Оно уменьшается на величину упругой части удлинения (отрезок LM). Отрезок OL представляет собой остаточное удлинение. Его называют также пластическим удлинением, а соответствующую ему деформацию — пластической деформацией. При повторном нагружении образца диаграмма растяжения при­нимает вид прямой LK и далее — кривой KCD, как будто промежуточной разгрузки и не было.


Чтобы дать количественную оценку описанным выше свойствам материала, перестроим диаграмму растяжения в коорди­натах σ и ε. Эта диаграмма имеет тот же вид, что и диаграмма растяжения, но будет характеризовать уже не свойства образца, а свойства материала. Отметим на диаграм­ме характерные точки и дадим определение соответствующих им число­вых величин. Наибольшее напряже­ние, до которого матери­ал следует закону Гука, называется пределом про­порциональности σп. Величина предела пропорциональности за­висит от той степени точности, с которой начальный участок диаграммы можно рассмат­ривать как прямую.

Упругие свойства материала сохраняются до напряжения, на­зываемого пределом упругости. Под пределом упругости σу пони­мается такое наибольшее напряжение, до которого материал не получает остаточных деформаций. Для того чтобы найти предел упругости, необходимо после каждой дополнительной нагрузки образец разгружать и следить, не образовалась ли остаточная деформация. Так как пластиче­ские деформации в отдельных кристаллах появляются уже в самой ранней стадии нагружения, ясно, что величина предела упругости, как и предела пропорциональности, зависит от требований точно­сти, которые накладываются на производимые замеры.

Следующей   характеристикой   является предел текучести. Под пределом текучести понимается то напря­жение, при котором происходит рост деформации без заметного увеличения нагрузки. Предел текучести легко поддается определению и является одной из основных механических характеристик материала.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит назва­ние предела прочности, или временного сопротивления, и обознача­ется через σвр.

Пластичность и хрупкость. Твердость

Способность материала получать большие остаточные деформа­ции, не разрушаясь, носит название пластичности. Свойство пла­стичности имеет решающее значение для таких технологических опе­раций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение δ при разрыве. Чем больше δ, тем более пластичным считается материал. К числу весьма пластичных материалов относятся отожженная медь, алюминий, латунь, малоуглеродистая сталь и др. Менее пластичными являются дюраль и бронза. К числу слабо пла­стичных материалов относятся многие легирован­ные стали.

Противоположным  свойству   пластичности  яв­ляется свойство хрупкости, т. е. способность ма­териала   разрушаться без   образования   заметных  остаточных деформаций.  Материалы, обладающие этим свойством, называются хрупкими. Для таких материалов величина удлинения при разрыве не превышает 2—5%, а в ряде случаев измеряется долями процента. К хрупким мате­риалам относятся  чугун,   высокоуглеродистая   инструментальная сталь, стекло, кирпич, камни и др. Диаграмма растяжения хруп­ких материалов не имеет площадки текучести и зоны упрочнения.


Кривые растяжения материалов: а-хрупкого, б-пластичного


По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Испытание на сжатие производится на коротких цилиндрических образцах, располагае­мых между параллельными плитами. Диаграмма сжатия образца имеет вид кривой, показанной на рисунке.

 Здесь, как и для растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, од­нако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается; сам образец вследствие трения на торцах принимает бочкообразную форму. Довести образец пластического материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может.

Иначе ведут себя при испы­тании на сжатие хрупкие материалы. Диаграмма сжатия этих материалов сохраняет качественные особенности диаграммы растяжения. Предел прочности хрупкого материала при сжатии определяется так же, как и при растяжении. Разрушение образца происходит с образованием тре­щин по наклонным или продольным плоскостям.

Сопоставление предела прочности хрупких материалов при рас­тяжении с пределом прочности при сжатии показывает, что эти материалы обладают, как правило, более высокими прочност­ными показателями при сжатии, нежели при растяжении. Существуют материалы, способные воспринимать при растяже­нии большие нагрузки, чем при сжатии. Это обычно материалы, имеющие волокнистую структуру, — дерево и некоторые типы пластмасс. Этим свойством обладают и некоторые ме­таллы, например магний.

Способы измерения твёрдости

Под твердостью понимается способность материала противодей­ствовать механическому проникновению в него посторонних тел. Такое определение твердости повторяет, по существу, опре­деление свойств прочности. В материале при вдавливании в него острого предмета возникают местные пластические деформации, со­провождающиеся при дальнейшем увеличении сил местным разру­шением. Поэтому показатель твердости связан с показателями проч­ности и пластичности и зависит от конкретных условий ведения ис­пытания.

Наиболее широкое распространение получили пробы по Бринелю и по Роквеллу. В первом случае в поверхность исследуемой детали вдавливается стальной шарик диаметром 10 мм, во втором — алмазный острый наконечник. По обмеру полученного отпечатка судят о твердости материала. Испытательная лаборатория обычно располагает составленной путем экспериментов переводной табли­цей, при помощи которой можно приближенно по показателю твер­дости определить предел прочности материала. Таким образом, в результате пробы на твердость удается определить прочностные показатели материала, не разрушая детали.

Для каждого материала существует установленная ГОСТом сила вдавливания F

Для стали и чугуна                                     F = 3000 кгс

            Для сплава меди, никеля, алюминия        F = 1000 кгс

            Для мягких сплавов                                                F = 250 кгс

Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.


                                  [HB] = 1Па

Для стали                     ~  0,4 HB

Для бронзы, латуни    ~  0,25 HB

Влияние энергии химических связей на свойства материалов

Свойства материалов определяются химическим составом и внутренним строением. При одном и том же хи­мическом составе свойства материалов могут существенно отличаться в зависимости от условий их получения и эксплуатации.

Так как любой материал представляет собой продукт вза­имодействия огромного количества атомов одного или несколь­ких химических элементов, то его свойства прежде всего зави­сят от типа и энергии химической связи составляющих атомов. При любом характере химического сродства частицы тела стремятся расположиться в таком по­рядке и на таких расстояниях, которые обусловливают относи­тельный минимум энергии всей системы, иными словами, ее наиболее устойчивое в данных условиях состояние. Эти равновесные расстояния между частицами обозначим R0.

При очень больших взаимных расстояниях атомы практически не взаимодействуют друг с другом, так что энер­гию их можно считать постоянной и равной нулю. При уменьшении расстояния между атомами проявляются силы притяже­ния и потенциальная энергия понижается. При некотором равновесном расстоянии R=Ro энергия W принимает мини­мальное значение, а результирующая сила взаимодействия F = dW/dR становится равной нулю. При дальнейшем сближе­нии частиц возникнут силы отталкивания, так как внеш­ние слои атомов, заряженные отрицательно, придут в тесное соприкосновение.

Общая зависимость изменения энергии W и сил взаимодей­ствия F пары частиц в молекулах  вы­ражается кривой взаимодействия, приведенной на рисунке.

В условиях равновесия частицы располагаются в миниму­мах потенциальной кривой — в «потенциальных ямах». Величина Wmin характеризует энергию связи частиц, т. е. ту энергию, которую нужно затратить, чтобы разобщить структур­ные элементы тела. Максимум величины F представляет собой теоретическое усилие, которое может выдержать тело при упругом растяжении. Величина ΔW — энергия перехода ча­стиц из одного относительно устойчивого состояния в дру­гое.

Знание кривых взаимодей­ствия позволяет судить о ряде общих свойств тел и особенностях их поведения. Чем ниже расположена точка Wmin, тем выше энергия связи частиц те­ла, выше его температура плавления, больше модуль упруго­сти, меньше температурный коэффициент линейного расшире­ния и т. д. Хотя точный вид кривой взаимодействия зависит от конкретных свойств взаимодействующих частиц и от направления, в котором она исследуется, однако в общих чертах ее вид определяется типом и энергией химической связи. При воздействии на тело силовых полей частицы тела смещаются из равновесных положений. При этом могут наблюдаться три случая.

1. Ни одна частица не перемещается через вершины потен­циальных кривых (не переходит через потенциальные барьеры). Тогда мы имеем дело с упругими безгистерезисными явлени­ями, при которых состояние системы при данном значении поля одинаково как в процессе его приложения (при возрастании напряженности поля), так и в процессе уменьшения напряжен­ности поля.

2. Некоторые слабо связанные или все частицы силовое поле перебрасывает через потенциальные барьеры из одного относи­тельно устойчивого состояния в другое, но после снятия внеш­него воздействия под влиянием внутренних напряжений или теплового движения устанавливается статистически первона­чальное состояние. Это бывает тогда, когда осуществляются переходы через потенциальные барьеры, сравниваемые по порядку со средней тепловой энергией частиц. В этом слу­чае происходят упруго-гистерезисные процессы. Такие процессы характеризуют замкнутыми кривыми, называемыми циклами гистерезиса.

3. Если поле перемещает частицы через достаточно высокие потенциальные барь­еры, то при снятии внешнего воздействия проявляется остаточный эффект. Он наблюдается при пластической деформации металлов, получении постоянных магнитов, электретов и т. д.

Если во втором или третьем случае, т. е. при переходе через потенциальные барьеры, процесс идет последовательно, то после перехода возникают «пробойные явления» — электрический ток, течение материала и т. п.

Теоретическая и реальная прочности кристаллов на сдвиг

Рассмотрим кристалл


               

Тогда общая сила   (где N – количество пар электронов и ионов)

               a – период кристаллической решётки

Тогда  


Отсюда                                               - прочность кристалла в зависимости от периода

   кристаллической решётки

Основным механизмом пластического течения кристаллов является сдвигообразование. Долгое время считалось, что такое сдвигообразование происходит путем жесткого смещения одной части кристалла от­носительно другой     одновременно   по всей плоскости    скольжения    SS.

В неискаженной решетке атомы двух соседних параллельных пло­скостей занимают положения равновесия, отвечающие минимуму по­тенциальной энергии (рис. а). Силы взаимодействия между ними равны нулю. При постепенном смещении одной атомной плоскости от­носительно другой возникают касательные напряжения, препятст­вующие сдвигу и стремящиеся восстановить нарушенное равновесие (рис. б). Критическое  скалывающее   напряжение  должно  составлять десятую долю от модуля сдвига. В таблице приведено τк для ряда метал­лических кристаллов, определенное из опыта и вычисленное теоре­тически. Сравнение этих величин показывает, что реальная прочность кристаллов на сдвиг на 3—4 порядка меньше теоретически вычисленной прочности этих кристаллов. Это свидетельствует о том, что сдвиг в кристаллах происходит не путем жесткого смещения атомных плос­костей друг относительно друга, а осуществляется таким механиз­мом, при котором в каждый момент имеет место смещение относи­тельно малого количества атомов. Это привело к развитию дис­локационной теории пластического течения кристаллов.

γ- деформация сдвига

 - напряжение сдвига


                                                                                                G – модуль сдвига

Металл

τк,  10-7Па

(эксперимен-таль­ное)

G, 10-7 Па

τк,  10-7Па

 (теоретическое)

G/2π

G/30

Медь    
Серебро  
Никель  
Железо   
Магний  
Цинк   
Кадмий

0,10

0,06

0,58

2,90

0,08

0,09

0,06

4620

2910

7800

6900

1770

3780

2640

735

455

1240

1100

280

600

420

154

Бесплатная лекция: "11 Теория интегрирования Коши" также доступна.

97

260

230

59

126

88

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее