Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ

Легированные стали

2021-03-09СтудИзба

5. Легированные стали

Легированной называют сталь, содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы.

Легированные стали имеют целый ряд преимуществ перед углеро­дистыми. Они имеют более высокие механические свойства, прежде всего, прочность. Легированные стали обеспечивают большую прокаливаемость, а также возможность получения структуры мартенсита при закалке в масле, что уменьшает опасность появления трещин и короб­ления деталей. С помощью легирования можно придать стали различ­ные специальные свойства (коррозионную стойкость, жаростойкость, жаропрочность, износостойкость, магнитные и электрические свойства).

Классификация сталей по различным признакам была рассмот­рена ранее (см. раздел 3.2) . Отметим только, что стали обыкновен­ного качества, могут быть только углеродистыми, т.е. легированные стали, как минимум, являются качественными.

Маркируются легированные стали с помощью цифр и букв, ука­зывающих примерный химический состав стали. Первые цифры в марке показывают среднее содержание углерода в сотых долях про­цента. Далее показывается содержание легирующих элементов. Каж­дый элемент обозначается своей буквой: Н — никель, Г — марга­нец, Ц — цирконий, Т — титан, X — хром, Д — медь, С — кремний, А — азот, К — кобальт, Р — бор, П — фосфор, Ф — ванадий, М — молибден, Б — ниобий, В — вольфрам, Ю — алюминий. Цифры, идущие после буквы, указывают примерное содержание данного ле­гирующего элемента в процентах. При содержании элемента менее 1% цифра отсутствует. Например, сталь 12Х18Н10Т содержит при­близительно 0,12 % углерода, 18 % хрома, 10 % никеля, менее 1 % титана. Для некоторых групп сталей применяют другую маркировку, которая будет указана при рассмотрении этих сталей.

5.1. Конструкционные стали

Конструкционные стали идут на изготовление деталей машин, конструкций и сооружений. Они должны обеспечивать длительную и надежную работу деталей и конструкций в условиях эксплуатации. Поэтому основное требование к конструкционным сталям — комплекс высоких механических свойств.

Рекомендуемые материалы

Строительные стали содержат малые количества углерода (0,1…0,3%). Это объясняется тем, что детали строительных конструкции обычно соединяются сваркой. Низкое содержание углерода обеспечивает хорошую свариваемость.

В качестве строительных используются углеродистые стали Ст2 и СтЗ, имеющие предел текучести σ0.2=240 МПа. В низколегированных строительных сталях при содержании около 1,5 % Мn и 0,7%Si предел текучести увеличивается до 360 МПа. К этим сталям относятся 14Г2, 17ГС, 14ХГС. Дополнительное легирование небольшими количествами ванадия и ниобия (до 0,1 %) повышает предел текучести до 450 МПа за счет уменьшения величины зерна. К сталям такого типа относятся 14Г2АФ, 17Г2АФБ.

Приведенные стали применяют для строительных конструкций, армирования железобетона, магистральных нефтепроводов и газопроводов.

Цементуемые стали содержат 0,1…0,3 % углерода. Они подверга­ются цементации, закалке и низкому отпуску. После этой обработки твердость поверхности составляет HRC 60, а сердцевины HRC 15 … 40. Упрочнение сердцевины в этих статях тем сильнее, чем больше содержание легирующих элементов. В зависимости от степени уп­рочнения сердцевины цементуемые стали можно разделить на три группы.

К сталям с неупрочняемой сердцевиной относятся углеродистые цементуемые стали 10, 15, 20. Их сердцевина имеет феррито-пер-литную структуру. Эти стали имеют высокую износостойкость, но малую прочность (σв= 400…500 МПа). Поэтому они применяются для малоответственных деталей небольших размеров.

К сталям со слабо упрочняемой сердцевиной относятся низколегированные стали 15Х, 15ХР, 20ХН и др. Сердцевина имеет структуру бейнит. Эти стали имеют повышенную прочность (σв = 750…850 МПа).

К сталям с сильно упрочняемой сердцевиной относятся, стали 20ХГР, 18ХГТ, ЗОХГТ, 12ХНЗ, 18Х2Н4В и др. Серцевина имеет мартенситную структуру. Стали этой группы имеют высокую прочность (σв = 1200…1600 МПа) и применяются для крупных деталей, испытывающих значительные нагрузки.

Улучшаемые стали содержат 0,3…0,5 % углерода и небольшое количество легирующих элементов (до 3…5 %). Эти стали подвергаются улучшению, состоящему из закалки в масле и высокого отпуска. После термообработки имеют структуру сорбита. Механические свой­ства разных марок улучшаемой стали в случае сквозной прокаливаемости близки (σв = 900…1200 МПа). Поэтому прокаливаемость оп­ределяет выбор стали. Чем больше легирующих элементов, тем выше прокаливаемость. Следовательно, чем больше сечение детали, тем более легированную сталь следует использовать. По прокаливаем ос­ти улучшаемые стали могут быть условно разбиты на пять групп.

В первую труппу входят углеродистые стали 35, 40, 45, имеющие критический диаметр Dкр= 10 мм (см. раздел 4.2.). Эти стали под­вергаются нормализации вместо улучшения.

Ко второй группе относятся стали, легированные хромом ЗОХ, 40Х. Для них критический диаметр составляет Dкр= 15…20 мм.

Третью группу составляют хромистые стали, дополнительно ле­гированные еще одним двумя элементами (кроме никеля) ЗОХМ, 40ХГ, ЗОХГС и др. Для этих сталей Dкр= 20…30 мм.

Четвертая группа представлена хромоникелевыми сталями, со­держащими около 1% никеля: 40ХН, 40ХНМ и др. Их критический диаметр Dкр= 40 мм.

В пятую группу входят стали, легированные рядом элементов, причем содержание никеля доходит до 3…4 %: 38ХНЗ, 38ХНЗМФ (Dкр= 100 мм). Это лучшие марки улучшаемых сталей, хотя они сравнительно дороги.

Высокопрочные стали. Новейшая техника предъявляет высо­кие требования к прочности стали ( σв = 1500…2500 МПа). Этим тре­бованиям соответствуют мартенитностареющие стали сочетаю­щие высокую прочность с достаточной вязкостью и пластичностью. Они представляют собой практически безуглеродистые (до 0,03 % С) сплавы железа с никелем (17…26 % Ni), дополнительно легированные титаном, алюминием, молибденом, ниобием и кобальтом.

 Широкое распространение получила сталь Н18К9М5Т. Она подвергается за­калке на воздухе с 800…850 °С. Высокую прочность маргенситностареюшие стали получают в результате старения, представляющего собой отпуск, производимый при температуре 450…500 °С. В резуль­тате такой термообработки сталь Н18К9М5Т имеет предел прочно­сти σ в = 2000 МПа.

Кроме упомянутой выше стали нашли применение стали Н12К8МЗГ2, МЮХ11М2Т, Н12К8М4Г2 и другие. Мартенситностаре-ющие стали применяют в авиационной промышленности, в ракетной технике, судостроении и т. д. Они обладают хорошей свариваемостью и обрабатываемостью. Эти стали являются достаточно дорогостоящими.

Пружинные стали. В пружинах и рессорах используются толь ко упругие свойства стали. Возникновение пластической деформа­ции в них недопустимо, поэтому высоких требований к пластичнос­ти и вязкости не предъявляется. Основное требование к пружинной стали — высокий предел упругости σy(см. раздел 1.2). Хорошие упругие свойства стали достигаются при повышенном содержании углерода (0,5…0,7 %) и применении термообработки, состоящей из закалки и среднего отпуска при температуре 350…450 °С. После та­кой термообработки сталь имеет троститную структуру.

Углеродистые пружинные стали (65, 70, 75) вследствие низкой прокаливаемости используются для пружин небольшого сечения. Они могут работать при температуре до 100 °С. Стали, легированные кремнием и марганцем (60С2, 60СГ и др.) предназначены для больших по размеру упругих элементов и обеспечивают их длительную и надежную работу. Для ответственных пружин применяют высокока­чественные стали легированные хромом и ванадием (50ХФА. 50ХГФА). Эти стали могут работать при температуре до 300 °С. Из них изготавливают, например, рессоры легковых автомобилей.

Износостойкие стали способны сопротивляться процессу изна­шивания. Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к умень­шению их размеров (износу). Износостойкие стали можно разделить на три группы.

В первую группу входят стали, износостойкость которых дости­гается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке.

 Имеют структуру мартенсита или мартенсита с карбидными включениями. К этой группе относятся подшипниковые стали, из которых изготавливают­ся шарики и ролики подшипников качения. Они маркируются бук­вами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1 %.

Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода ( ~1, %) и кремния (~1 %), что повышает способность к графитизации. Эти стали подвергаются графитизирующему отжигу, который аналогичен отжигу ковкого чугуна (см. раздел З.З.).

Третью группу составляют стали износостойкость, которых дос­тигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110Г13. Она имеет невысокую твердость, которая при дей­ствии давления и ударов резко повышается, за счет чего и достигает­ся износостойкость. Эта сталь подвергается закалке от 1100 °С в воде, после чего получает аустенитную структуру. Плохо обрабаты­вается резанием, поэтому применяется в литом состоянии.

5.2. Стали со специальными свойствами

Коррозионностойкие (нержавеющие) стали. Коррозией называется разрушение металла под действием внешней агрессивной среды в результате ее химического или электрохимического воздействия. Раз­личают химическую коррозию, обусловленную воздействием на металл сухих газов и неэлектролитов (например, нефтепродуктов) и электро­химическую, возникающую под действием жидких электролитов или влажного воздуха. По характеру коррозионного разрушения различают сплошную и местную коррозию. Сплошная коррозия захватывает всю поверхность металла. Ее делят на равномерную и неравномерную в зависимости от того, одинаковая ли глубина коррозионного разруше­ния на разных участках. При местной коррозии поражения локальны. В зависимости от степени локализации различают пятнистую, язвен­ную, точечную, межкристаллитную и др. виды местной коррозии.

Самый надежный способ защиты от коррозии — применение коррозионностойких сталей. Коррозионная стойкость достигается при введении в сталь элементов, образующих на ее поверхности тонкие и прочные оксидные пленки. Наилучший из этих элементов — хром. При введении в сталь 12…14 % хрома она становится устойчивой про­тив коррозии в атмосфере, воде, ряде кислот, щелочей и солей. Ста­ли, содержащие меньшее количество хрома, подвержены коррозии точно так же, как и углеродистые стали. В технике применяют хроми­стые и хромоникелевые Коррозионностойкие стали.

Хромистые Коррозионностойкие стали могут содержать 13, 17 или 25…27 % хрома. Стали марок 08X13, 12X13, 20X13 подвергают­ся закалке от 1000 °С и отпуску при 600…700 °С. Их применяют для изготовления деталей с повышенной пластичностью, работающих в слабоагрессивных средах. Стали 30X13, 40X13 подвергаются закал­ке и отпуску при 200…300°С. Из них изготавливают режущий, мери­тельный и хирургическим инструмент.

Стали 12X17, 15X28 имеют более высокую коррозионную стой­кость. Подвергаются отжигу при температуре 700…780 °С.Используются для оборудования заводов легкой и пищевой промышленности, труб, работающих в агрессивных средах, для кухонной посуды.

Хромоникелевые стали обычно содержат 18 % хрома и 9…12 % никеля (04Х18Н10, 12Х18Н10Т, 12Х18Н12Т и др.). Они имеют более высокую коррозионную стойкость по сравнению с хромистыми сталями, лучшие механические свойства, хорошо свариваются. Эти стали имеют аустенитную структуру. Их термообработка состоит из закалки от температуры 1100…1150 °С в воде без отпуска.

Хромоникелевые стали склонны к межкристаллитной коррозии. Она быстро распространяется по границам зерен без заметных вне­шних признаков. Это происходит вследствие образования карбидов хрома по границам зерен, что приводит к уменьшению содержания хрома в поверхностном слое зерна: Чтобы карбиды хрома не обра­зовывались, надо либо использовать стали с пониженным содержа­нием углерода (до 0,04 %), либо дополнительно легировать сталь ти­таном, связывающим углерод в карбид титана.

Используются хромоникелевые стали в пищевой и химической промышленности, в холодильной технике. Поскольку никель доро­гостоящий элемент, иногда его частично заменяют марганцем и ис­пользуют сталь-10Х14П4Н4Т.

Другие методы защиты от коррозии. Распространенным средством защиты от коррозии является нанесение на защищаемый металл раз­личных покрытий. Металлические покрытия наносятся различным способами. При погружении в расплавленный металл поверхность изделия покрывается тонким и плотным слоем, затвердевающим после извлечения изделия. Этот способ применяется для нанесения покрытий цинком, оловом, свинцом и алюминием, температура плавления которых ниже, чем у защищаемого металла. При диффузионной металлизации изделие засыпают порошками алюминия, хрома, цинка и выдерживают при высокой температуре. При напылении поверхность изделия покрывают слоем расплавленного металла (цинка, алюминия, кадмия I др.) с помощью воздушной струи. При плакировании защищаемый металл подвергают совместной прокатке с защищающим (алюминием, титаном, нержавеющей сталью).

Гальванический способ нанесения покрытий основан па осаждении под действием электрического тока тонкого слоя защитного металла (хрома, никеля, меди, кадмия) при погружении защищаемого изделия в раствор электролита.

Неметаллические покрытия подразделяются на лакокрасочные и эмалевые, смоляные, покрытия пленочными полимерными материалами, резиной, смазочными материалами, керамические покрытия. Покрытия, получаемые химической и электрохимической обработкой, превращают поверхностный слой изделия в химическое соединение, образующее сплошную защитную пленку. Наибольшее распространение имеют оксидные и фосфатные защитные пленки.

Протекторная защита основана на подсоединении к защищае­мому изделию протектора с более отрицательным электрохимичес­ким потенциалом. В агрессивной среде протектор будет являться анодом, и разрушаться, а защищаемое изделие — катодом и разру­шаться не будет.

Для уменьшения агрессивности окружающей среды в нее, вво­дят добавки, называемые ингибиторами коррозии. Они значитель­но снижают скорость коррозии. Условием использования ингиби­торов является эксплуатация изделия в замкнутой среде постоянного состава.

Жаростойкие и жаропрочные стали. Под жаростойкими сталя­ми понимают стали, обладающие стойкостью против химического разрушения поверхности при высокой температуре (свыше 550 °С).

При нагреве стали происходит окисление поверхности и образуется оксидная пленка (окалина). Дальнейшее окисление определяется ско­ростью проникновения атомов кислорода через эту пленку. Через пленку оксидов железа они проникают очень легко. Для повышения жаростойкости сталь легируют элементами, образующими плотную пленку, через которую атомы кислорода не проникают. Эти элемен­ты — хром, алюминий, кремний. Так как алюминий и кремний по­вышают хрупкость стали, чаще всего применяют хром. Чем больше его содержание, тем более жаропрочной является сталь. Сталь 15X5 выдерживает до 600 °С, 40Х9С2 — до 800 °С, рассмотренные ранее 12X17 — до 900°С и 15X28 — до 1050 °С.

Жаропрочные материалы способны противостоять механическим нагрузкам при высоких температурах. Жаропрочные стали класси­фицируются по структуре.

Перлитные стали содержат малое количество углерода, легиру­ются хромом, молибденом, ванадием (12ХМ, 12Х1МФ). Используют для изготовления труб, паропроводов и др. деталей, длительно рабо­тающих при температуре 500…550 °С.

Мартенситные стали в большом количестве легированы хро­мом (15X11МФ, 15Х12ВНМФ). Они используются для деталей энер­гетического оборудования, длительно работающего при температу­ре 600…620 °С. Особую группу мартенситных сталей составляют сильхромы, применяемые для клапанов двигателей внутреннего сгорания. Они дополнительно легированы кремнием (40Х9С2, 40Х10С2М).

Аустенитные стали, легированы большим количеством хрома и никеля, а также другими элементами (09Х14Н16Б, 09Х14Н19В2БР). Из этих сталей изготавливают детали газовых турбин, работающих при температуре 600…700 °С.

Для работы при более высоких температурах (700…900 °С) слу­жат сплавы на основе никеля, называемые нимониками. Примером нимоника является сплав ХН77ТЮР, содержащий кроме никеля приблизительно 20 % Сг, 2,5 % Т1, 1 % А1.

Для работы при температурах свыше 1000 °С используют тугоп­лавкие металлы и их сплавы. Это — хром, ниобий, молибден, тантал, вольфрам. Они используются в атомной энергетике и в косми­ческой технике.

Температуры 1500…1700°С выдерживают жаропрочные керами­ческие материалы на основе карбида и нитрида кремния.

5.3. Инструментальные стали и сплавы

По назначению инструментальные стали делятся на стали для ре­жущего, измерительного и штампового инструмента. Кроме сталей, для изготовления режущего инструмента применяются металлокерамические твердые сплавы и минералокерамические материалы. Режу­щий инструмент работает в сложных условиях, подвержен интенсив­ному износу, при работе часто разогревается. Поэтому материал для изготовления режущего инструмента должен обладать высокой твер­достью, износостойкостью и теплостойкостью. Теплостойкость — это способность сохранять высокую твердость и режущие свойства при длительном нагреве.

Углеродистые инструментальные стали содержат 0,7…1,3 % уг­лерода. Они маркируются буквой У и цифрой, показывающих со­держание углерода в десятых долях процента (У7, У8, У9, ..., У13). Буква А в конце марки показывает, что сталь высококачественная (У7А, У8А, ..., У13А). Предварительная термообработка этих сталей — отжиг на зернистый перлит, окончательная — закалка в воде или растворе соли и низкий отпуск. После этого структура стали представляет со­бой мартенсит с включениями зернистого цементита. Твердость ле­жит в интервале HRC 56…64.

Для углеродистых инструментальных сталей характерны низкая теплостойкость (до 200 °С) и низкая прокаливаемость (до 10…12 мм). Однако вязкая незакаленная сердцевина повышает устойчивость инструмента против поломок при вибрациях и ударах.

Кроме того, эти стали достаточно дешевы и в незакаленном состоянии сами хо­рошо обрабатываются.

Стали У7…У9 применяются дня изготовления инструмента, ис­пытывающего ударные нагрузки (зубила, молотки, топоры). Стали У 10…У 13 идут на изготовление инструмента, обладающего высокой твердостью (напильники, хирургический инструмент). Стали У8…У12 применяются также для измерительного инструмента.

Низколегированные инструментальные стали содержат в сум­ме около 1…3 % легирующих элементов. Они обладают повышенной по сравнению с углеродистыми сталями прокаливаемостью, но теп­лостойкость их невелика — до 400 °С. Основные легирующие эле­менты — хром, кремний, вольфрам, ванадий.

Маркируются эти ста­ли так же, как конструкционные, но содержание углерода дается в десятых долях процента. Если первая цифра в марке отсутствует, то содержание углерода превышает 1 %. Например 9ХС, ХВГ, ХВ5.

Термообработка низколегированных инструментальных сталей — закалка в масле и отпуск при температуре 150…200 °С. При этом обычно достигается сквозная прокаливаемость. Твердость после термообра­ботки составляет HRC 62…64.

Благодаря большей прокаливаемости и закалке в масле низко­легированные стали используются для изготовления инструмента боль­шой длины и крупного сечения (например, сверл диаметром до 60 мм). Применяются для ручного инструмента по металлу и измерительного инструмента.

Если Вам понравилась эта лекция, то понравится и эта - 4. Теоретические основы подготовки к переработке газообразного, жидкого и твердого видов сырья.

Быстрорежущие стали, предназначены для работы при высоких скоростях резания. Главное их достоинство — высокая теплостой­кость (до 650 °С). Это достигается за счет большого количества ле­гирующих элементов — вольфрама, хрома, молибдена, ванадия, кобальта. Маркируются быстрорежущие стали буквой Р, число после которой показывает среднее содержание вольфрама в %. Далее идут обозначения и содержание других легирующих элементов. Содержа­ние углерода во всех быстрорежущих сталях приблизительно 1 %, а хрома 4 %. Поэтому эти элементы в марке не указываются. Напри­мер, Р18, Р9, Р6М5, Р6М5Ф2К8.

Термообработка быстрорежущих сталей заключается закалке от высоких температур (1200…1300 °С) и трехкратном отпуске при 550…570 °С. Трехкратный отпуск применяется для того, чтобы избавиться от остаточного аустенита, который присутствует после закалки в ко­личестве приблизительно 30% и снижает режущие свойства. После термообработки сталь имеет мартенситную структуру с карбидными включениями. Твердость после термообработки составляет HRC 64…65.

Быстрорежущие стали применяются для инструмента, использу­емого для обработки металла на металлорежущих станках (резцы, фрезы, сверла). Для экономии дорогих быстрорежущих сталей ре­жущий инструмент часто изготавливается сборным или сварным. Рабочую часть из быстрорежущей стали приваривают к основной части инструмента из конструкционной стали.

Металлокерамические твердые сплавы представляют собой спеченные порошковые материалы, основой которых служат карби­ды тугоплавких металлов, а связующим — кобальт. Их теплостой­кость доходит до 900…1000 °С, а твердость НКА 80…97.

Твердые сплавы делятся на три группы. Вольфрамовые изготов­ляются на основе карбида вольфрама и кобальта. Маркируются бук­вами ВК и цифрой показывающей содержание кобальта в % (ВК2, ВК6, ВК10). Титановолъфрамовые твердые сплавы содержат допол­нительно карбид титана. Они маркируются буквами Т, К и цифрами. После буквы Т указывается содержание карбида титана в %, а после буквы К — кобальта (Т15К10, Т15К6). Титанотанталовольфрамовые содержат дополнительно карбид титана. Маркируются буквами ТТ, после которых указывается суммарное содержание карбидов титана и тантала в % и буквой К, после которой указывается содер­жание кобальта (ТТ7К12, ТТ10К8).

Твердые сплавы изготавливаются в виде пластин которые при­паиваются к державке из углеродистой стали. Применяют твердые сплавы для резцов, сверл, фрез и другого инструмента. Главный не­достаток твердых сплавов — высокая хрупкость.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее