Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Лекции по цифровой электронике » Интегральные логические элементы

Интегральные логические элементы

2021-03-09СтудИзба

1. Интегральные логические элементы.

Современные логические элементы (ЛЭ) реализуются исключительно в виде интегральных микросхем. Наибольшее распространение получили микросхемы транзисторно-транзисторной логики (ТТЛ) и схемы на МОП (металл-окисел- полупроводник) – структурах.

1.1.  Характеристики ЛЭ.

ЛЭ характеризуются быстродействием, нагрузочной способностью (коэффициентом разветвления по выходу), коэффициентом объединения по входу (числом входов ЛЭ), помехоустойчивостью, потребляемой мощностью, напряжением питания и уровнем сигналов.

Описание: ....Мои документыSXEMA2.jpgБыстродействие – один из важнейших параметров, характеризуюемый средним временем задержки распространения сигнала

 (рис. 2.1.)

Для современных ЛЭ задержка распространения составляет обычно единицы наносекунд.

Рис. 2.1. Задержка переключения.

Нагрузочная способность показывает, на сколько логических входов может быть одновременно нагружен выход данного ЛЭ без нарушения его работоспособности. Для большинства ЛЭ нагрузочная способность обычно не превышает 10 входов. Для специальных буферных ЛЭ она может достигать 30-40.

Коэффициент объединения по входу определяет максимальное возможное число входов ЛЭ. Увеличение числа входов расширяет логические возможности схемы, однако при этом ухудшаются быстродействие и помехоустойчивость. У известных ЛЭ максимальное число входов – 8.

Рекомендуемые материалы

Помехоустойчивость характеризует способность ЛЭ правильно функционировать при наличии помех и определяется максимально допустимым напряжением  помехи.

Потребляемая мощность Pср=0,5(P0 + P1), где P0 и P1 – соответственно потребляемые мощности при состоянии выхода «0» и «1». При этом считается, что в сложном устройстве половина ЛЭ находится в состоянии «0», а половина – в «1». Однако Pср зависит от частоты переключений. Поэтому необходимо учитывать Pср при максимально допустимой частоте следования переключения импульсов.

ЛЭ характеризуются еще значением напряжения питания и уровнем логических сигналов, соответствующих «0» и «1».

1.2. Серии ЛЭ.

 Серией микросхем называют группу микросхем, выполненных по одинаковой или близкой технологии, имеющих сходные технические характеристики и предназначенные для совместной работы в составе цифровой аппаратуры.

 Условное обозначение логической микросхемы состоит из следующих элементов : 1) буквы, в большой степени характеризующие стойкость микросхемы к воздействию окружающей среды и связанный с этим тип корпуса (отсутствие буквы рассматривается как своего рода «нулевая буква»); 2) трёх или четырёх цифр, обозначающих номер серии; 3) двух букв, характеризующих выполняемую функцию; 4) одной или двух цифр, обозначающих тип микросхемы внутри функциональной группы; 5) буквы, характеризующие возможные вариации значений некоторых параметров. Чаще всего этой буквы не бывает.

Пример : К555ЛА2 - микросхема серии К555, выполняющая функцию И-НЕ, второго типа  (в серии К555 этот тип имеет 8 входов).

Микросхемы заключены в стандартные корпуса, в основном с двумя типами выводов :

1)  перпендикулярными плоскости корпуса, с шагом 2,5 мм, которые вставляются в отверстия монтажной платы и распаиваются на стороне платы, противоположной корпусу. Такие корпуса называют корпусами типа DIP (Dual In line Package - корпус с двумя рядами выводов). В корпуса DIP чаще всего заключаются микросхемы широкого применения, имеющие перед номером серии буквы К, КМ или КР ;

2)  плоскими (планарными), которые накладываются на плату и распаиваются на той же её стороне, где находится и сам корпус; шаг выводов 1,25 мм. В таких корпусах обычно выпускаются серии специального применения без буквы перед номером.

Габариты микросхемы определяет не кристалл кремния, а выводы из корпуса. Поэтому если элементы простые, то в корпусе размещают несколько одинаковых элементов.

Простые ЛЭ обычно размещают в корпусах DIP14 с 14 выводами, из которых один вывод - это питание и один вывод - общий провод всех логических входов, выходов и питания, кратко называемый общий или, менее строго - земля. Оставшиеся 12 выводов - логические.

Примеры состава корпусов : 6 х НЕ - шесть инверторов (Заняты все 12 выводов); 4 х 2И- четыре двухвходовых элемента И (заняты все выводы); 2 х 4И-НЕ - два четырёхвходовых элемента И-НЕ (не использованы два вывода). Более сложные логические узлы размещают в корпусах с 16, 24 и большим числом выводов.

В настоящее время наиболее распространены две технологии изготовления ЛЭ : ТТЛ и КМОП.

Для технологии ТТЛ (транзисторно-транзисторной логики) самыми удобными  для  изготовления  являются  элементы  И-НЕ.

Элементы ТТЛ, а тем более их модификация с диодами Шоттки - ТТЛШ, имеют хорошее быстродействие, удовлетворительные электрические и эксплуатационные характеристики. Большинство микропроцессорных больших интегральных схем (БИС) и БИС памяти согласованы по питанию и уровням сигналов с элементами ТТЛ. Серии ТТЛ и ТТЛШ - наиболее распространённые и популярные у разработчиков цифровых устройств.

Комплементарные (взаимно дополняющие) МОП (метал-окисел-полупроводник) - структуры, построенные на основе МОП-транзисторов с различным типом проводимости. Элементы КМОП исключительно экономны по потребляемой мощности, что является их основным достоинством. Они способны работать в широком диапазоне напряжений питания (3-15 В), имеют высокую помехоустойчивость. Недостатком их является пока ещё меньшее, чем у ТТЛ быстродействие. КМОП микросхемы нуждаются в более бережном обращении, чем другие микросхемы, т.к. из-за очень высокого входного сопротивления для них опасно статическое электричество.

В табл.2.1 приведены наборы микросхем отдельных ЛЭ, выпускаемых в рамках некоторых широко распространённых серий ТТЛ, ТТЛШ. КМОП. Из таблицы видно, что наиболее полно во всех сериях представлены элементы     И-НЕ.


Таблица 2.1

 Основные параметры

Технология. Серия

                                  и

ТТЛ

ТТЛШ

КМОП

        выполняемые функция

133

533

564

К155

К555

К561

Типовая средняя задержка, нС

18

20

80

Типовая средняя потребляемая мощность одним ЛЭ в статике

20 мВт

4 мВт

0,7 мкВт

6×НЕ

ЛН1

ЛН1

ЛН1

4×2И-НЕ

ЛА3

ЛА3

ЛА7

3×3И-НЕ

ЛА4

ЛА4

ЛА9

2×4И-НЕ

ЛА1

ЛА1

ЛА8

8И-НЕ

ЛА2

ЛА2

-

4×2И

ЛИ1

ЛИ1

-

3×3И

-

ЛИ3

-

2×4И

-

ЛИ6

-

4×2ИЛИ

ЛЛ1

ЛЛ1

-

4×2М2

ЛП5

ЛП5

ЛП2

4×2ИЛИ-НЕ

ЛЕ1

ЛЕ1

  ЛЕ5

3×3ИЛИ-НЕ

-

-

ЛЕ10

2×4ИЛИ-НЕ

ЛЕ2

-

ЛЕ6

2×2-2И-2ИЛИ-НЕ

ЛР1

-

-

4-4И-2ИЛИ-НЕ

ЛР4

-

-

2-2-2-3И-4ИЛИ-НЕ

ЛР3

-

-

1.3. Правила схемного включения ЛЭ.

Ограничение по нагрузочной способности ЛЭ задаётся максимальным числом входов ЛЭ той же серии, которые можно подключить к выходу данного элемента. Различные элементы различных серий имеют коэффициент разветвления по выходу Краз=5-20, типовое значение -10. Специальные буферные ЛЭ имеют Краз³30.

Неиспользованные входы И в большинстве серий не должны оставаться ни к чему не подключёнными. В ТТЛ- и ТТЛШ-сериях сигнал от свободного входа воспринимается элементом как логическая «1», но при этом снижаются помехоустойчивость и быстродействие ЛЭ. В сериях ТТЛ И ТТЛШ неиспользованные И-входы либо объединяют с другими, если при этом не превышается допустимая нагрузка источника сигнала, либо подключают к источнику логической «1». В качестве последнего используют или элемент И-НЕ, входы которого заземлены, или резистор с сопротивлением 1 кОм, подключённый к источнику питания +5В. К такому источнику разрешается подключать до 20 неиспользованных входов И.

В КМОП-элементах ни в коем случае не должно быть свободных входов. Их можно подключать к источнику питания без резистора или объединять с рабочими.

Неиспользованные входы ИЛИ в любых сериях должны быть соединены с логическим «0», т.е. с общим проводом.

Если некоторые ЛЭ, входящие в состав корпуса, не используются, то на входы неиспользуемых ЛЭ ТТЛ-серий нужно подать такие сигналы, чтобы на их выходах была «1»: в таком состоянии ЛЭ потребляют меньший ток и его можно использовать как источник логической «1».

Неиспользуемые КМОП-элементы можно фиксировать в любом состоянии, только не оставлять в безразличном.

1.4. ЛЭ с тремя состояниями выхода

В общем случае выходы обычных ЛЭ соединять между собой нельзя. Допускается соединение выходов, если между собой соединяются и входы, т.е. значения сигналов на входах и выходах ЛЭ всегда совпадают. Это делают для увеличения нагрузочной способности элементов.

Современные цифровые системы строятся по, так называемому, магистральному  принципу, когда для взаимного обмена данными различные устройства подключены к единой для всей системы магистральной шине данных.

Для предотвращения конфликта сигналов устройства, подключение своими выходами к магистрали, должны иметь возможность отключения от нее. Такую возможность предоставляют специальные ЛЭ с тремя состояниями выхода: два состояния – "0" и "1" как у обычных ЛЭ, а третье состояние – "отключено", когда элемент приобретает высокий выходной импеданс.

                                                  

Рис.2.2. Элементы с тремя состояниями.

Условное обозначение ЛЭ с тремя состояниями показано на рис.2.2,а , а его электромеханический аналог со стороны выхода на рис.2.2,б.

Таблица 2.2  иллюстрирует его работу.

Входы

Выход

Входы

Выход

Z

a

b

Z

a

b

1

X

X

Откл.

0

X

0

1

0

0

X

1

0

1

1

0

Из таблицы видно, что при Z=0 ЛЭ не отличается от обычного 2И-НЕ элемента, но при Z=1 выход ЛЭ переходит в состояние "отключен".

Примеры ЛЭ с тремя состояниями, имеющих высокую нагрузочную способность и называемых шинными формирователями (bus drivers), - микросхемы КР580ВА86, КР580ВА87.

Способ обмена с помощью магистралей помимо небольших затрат оборудования очень удобен для расширения системы, когда в процессе эксплуатации требуется подключение дополнительных устройств.

1.5. Этапы построения (синтеза) комбинационной схемы.

.

Этап 1. Наиболее часто встречающийся на практике способ задания схемы – это объяснение ее работы на понятийном уровне в виде набора фраз обычного языка (например, русского). Сложность этапа связана с тем, что задание описывается неформальными терминами, допускающими неоднозначную трактовку. Основная цель этапа – формализация задания, в процессе которой определяются количество входных логических переменных (аргументов) и значения выходной переменной (функции) для каждой комбинации значений аргументов. Результат этапа – таблица истинности. О уже задание, неоднозначное толкование которого невозможно. Наиболее трудно обнаруживаемые ошибки возникают именно на этапе формализации.

 Этап 2. Если функция определена не на всех наборах аргументов, то нужно ликвидировать неоднозначность таблицы.

Этап 3. Составить СДНФ для нескольких вариантов доопределения.

Этап 4. Минимизировать СДНФ любым доступным методом.

Этап 5. Реализовать получившиеся ДНФ на заданном логическом базисе.

Для сравнения между собой различных вариантов схем, реализующих одну и ту же функцию, нужно уметь как-то оценивать их качество.

Наиболее распространена оценка схемы по двум параметрам – задержке - Т и аппаратурным затратам  - W. . Подсчёт W удобно производить в двенадцатых долях корпуса : 12 - это число логических выводов корпуса наименьшего размера.

Пример. На логических микросхемах серии К155 (табл. 2.1) построить несколько вариантов схем, реализующих заданную минимальную ДНФ  Сравнить полученные результаты.

Схемная реализация в базисе НЕ, И, ИЛИ показана на рис.2.3,а. Аппаратурные затраты состоят из четырёх инверторов- (ЛН1), каждый из которых занимает 1/6 корпуса, двух элементов 2И- (ЛА3) и двух элементов 2ИЛИ- (ЛЛ1), каждый из которых занимает 1/4 корпуса. Считая, что задержки всех элементов одинаковы получим: Т=4t. W=4*1/6+2*1/4+2*1/4=20/12. Неиспользованные элементы частично занятых корпусов не учитываются, поскольку  они могут быть использованы в других узлах.11

Реализация Q  с использованием микросхем ЛР3 показана на рис. 3.1,б. Для неё нужно пять инверторов ЛН1 и целиком микросхему ЛР3 : Т=3t; W=5*1/6+1=22/12 корпуса. Затраты W немного возросли, а задержка уменьшилась до 3t.

Применив к функции Q правило де Моргана, получим    (рис.3.1,в), Т=3t; W=3*1/6+2*1/4+1*1/3=16/12 корпуса. Схема оказалась заметно экономичнее при том же быстродействии.

Можно попытаться использовать формулы де Моргана для уменьшения числа входных инверторов. Тогда (рис.2.3,г), Т=2t; W = 11/12 корпуса. Удалось выиграть и в быстродействии и в оборудовании.

Ещё одно применение формулы де Моргана даёт (рис.2.3,д) Т=3t ; W=9/12 корпуса. Схема хотя и более медленная, но очень экономичная.

 Если в последнем выражении раскрыть скобки, то получим ещё один вариант схемы (рис.2.3,е), Т=t; W=12/12 корпуса. Задержка этой схемы оказалась наименьшей из всех рассмотренных.

Отметим, что хотя за основу была взята минимальная ДНФ, её схемная реализация оказалась самой неэкономичной из всех. Противоречия здесь нет. Минимальная ДНФ минимальна лишь в определённом смысле: это выражение, имеющее минимальное суммарное число букв. Переводя на язык аппаратуры, можно сказать, что это соответствует минимуму суммы входов всех конъюнкторов, реализующих элементарные конъюнкции ДНФ в трехъярусной схеме НЕ-И-ИЛИ типа показанной на рис.3.1,а. Затраты инверторов и дизъюнкторов этот критерий игнорирует. Отсюда не следует, что минимизация не нужна вообще: чем компактнее выражение, тем легче обрабатывать его дальше.


Рис. 2.3,а. Варианты реализации функции Y.

Несколько полезных рекомендаций:

Лекция "67 Достаточные признаки разложимости в ряд Фурье" также может быть Вам полезна.

-сократить число инверторов, применив формулу де Моргана;

-использовать элементы И-ИЛИ-НЕ - они логически мощнее, чем И‑НЕ, ИЛИ‑НЕ;

-подбирать такие элементы, чтобы по возможности использовались все их входы;

-если выражение плохо минимизируется, попытаться применить элементы М2;

-вместо прямой функции реализовать её инверсию.

Алгоритма, который позволял бы целенаправленно строить хорошие схемы, в общем случае не существует. Не существует и чётких признаков окончания поиска хорошей схемы. В этом смысле разобранный пример не следует воспринимать как требование всегда проводить такую тщательную обработку любого выражения. Это просто иллюстрация характера работы при логическом проектирования. То же самое можно сказать и о процессе построения более сложных блоков из микросхем средней и большой интеграции. Слабо алгоритмизированный, поисковый, изобретательный стиль работы характерен для всех этапов функционально-логического проектирования цифровых устройств.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее