Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по матведу любого варианта за 7 суток
Любой ДЗ по метрологии, стандартизации и сертификаци

Счетчики импульсов и регистры

2021-03-09СтудИзба

Лекция 14. Счетчики импульсов и регистры

Основные определения и виды счетчиков. Счетчиком называют цифровое уст­ройство, предназначенное для подсчета числа импульсов. В процессе работы счет­чик последовательно изменяет свое состояние в определенном порядке. Длина списка разрешенных состояний счетчика называется модулем счета Ку. Одно из возможных состояний счетчика принимается за начальное. Если счетчик начал счет от начального состояния, то каждый импульс, кратный модулю счета Ад, снова устанавливает счетчик в начальное состояние, а на выходе счетчика появля­ется сигнал переноса Р (или займа Z).

Последовательность внутренних состояний счетчика можно кодировать раз­личными способами. Чаще всего используют двоичное (двоичные счетчики) или двоично-десятичное (декадные счетчики) кодирование. Кроме этого находят при­менение счетчики с одинарным кодированием, когда состояние счетчика представ­лено местом расположения одной-единственной единицы или одного-единствен-ного нуля (кольцевые счетчики), и унитарное кодирование, когда состояние счетчика представлено числом единиц или нулей (счетчики Джонсона).

Если коды расположены в возрастающем порядке, то счетчик называют сум­мирующим (Up-counter). Счетчики, у которых коды расположены в убывающем порядке, называют вычитающими (Down-counter), а счетчики, у которых направ­ление перебора кода может изменяться, называют реверсивными (Up/Down counter).

Если для работы счетчика требуется наличие синхросигнала, то такой счет­чик называют синхронным. Счетчики, которые работают без синхросигналов, называют асинхронными.

Счетчики могут быть с предварительной установкой и без нее. Для предвари­тельной установки начального состояния счетчика используются специальные входы предустановки. Установка начального состояния счетчика производится только по специальной команде записи. Во время работы счетчика в счетном режиме входы предустановки блокируются и на работу счетчика не влияют. Счет­чики с предварительной установкой называют также программируемыми, так как они позволяют изменять модуль счета Кс, который можно рассчитать по формуле

где Sk=0 или 1. По структуре счетчики делятся на последовательные (каскадные), параллель­ные и параллельно-последовательные, которые отличаются способом подачи счет­ных импульсов на входы разрядов счетчика. В последовательном счетчике счет­ные импульсы поступают только на вход первого разряда, а с его выхода перехо­дят на вход второго разряда. Таким образом, вход каждого последующего разряда счетчика соединен с выходом предыдущего. В параллельном счетчике счетные импульсы одновременно поступают на входы всех разрядов счетчика, однако благодаря внутренней организации счетчика каждому счетному импульсу соответствует срабатывание только определенных разрядов.

Для получения больших значений модуля пересчета используют каскадное соединение параллельных счетчиков. Такие параллельно-последовательные счет­чики имеют более высокое быстродействие, чем последовательные, и требуют меньших аппаратурных затрат,

Рекомендуемые материалы

Обобщенная схема счетчика приведена на рис. 14.1. Счетчик СТ можно пред­ставить в общем случае как устройство, которое содержит входную логику, управляющую работой счетчика, и выходную логику, которая используется для указания окончания счета или формирования сигнала переноса Р. Для приведения счетчика в начальное состояние используется сигнал сброса, поступающий на вход R.

Параллельный код для предварительной установки счетчика поступает на входы Sy .. •S'„. Сигнал разрешения параллельной загрузки М останавливает счет и позволяет подготовленным на входах So.. S^ данным загрузиться в счетчик в мо­мент прихода очередного тактового импульса С. Счетчик считает тактовые импульсы, поступающие на вход С, если присутствует сигнал разрешения счета на входе V.

Выходными сигналами счетчика обычно являются сигналы, снимаемые с выхо­дов отдельных разрядов Qi . Qn, сигнал окончания счета или сигнал переноса Р.

Асинхронные счетчики Асинхронный суммирующий счетчик можно выпол­нить на счетных триггерах любого типа. В большинстве случаев для этих целей

используют JK- или Д-триггеры в счетном режиме (см. лекцию 13) Простейший  четырех­разрядный счетчик на D-триггерах состоит из соединенных последо­вательно четырех счет­ных триггеров, таким образом, что выход Qi, каждого триггера соеди­нен с входом C^+i после­дующего   (рис. 14.2 я). При поступлении счет-Hbix импульсов на вход С] триггеры счетчика

Рис 14 1 Обобщенная схема счетчика импульсов

По структуре счетчики делятся на последовательные (каскадные), параллель­ные и параллельно-последовательные, которые отличаются способом подачи счет­ных импульсов на входы разрядов счетчика. В последовательном счетчике счет­ные импульсы поступают только на вход первого разряда, а с его выхода перехо­дят на вход второго разряда. Таким образом, вход каждого последующего разряда счетчика соединен с выходом предыдущего. В параллельном счетчике счетные импульсы одновременно поступают на входы всех разрядов счетчика, однако благодаря внутренней организации счетчика каждому счетному импульсу соответствует срабатывание только определенных разрядов.

Для получения больших значений модуля пересчета используют каскадное соединение параллельных счетчиков. Такие параллельно-последовательные счет­чики имеют более высокое быстродействие, чем последовательные, и требуют меньших аппаратурных затрат,

Обобщенная схема счетчика приведена на рис. 14.1. Счетчик СТ можно пред­ставить в общем случае как устройство, которое содержит входную логику, управляющую работой счетчика, и выходную логику, которая используется для указания окончания счета или формирования сигнала переноса Р. Для приведения счетчика в начальное состояние используется сигнал сброса, поступающий на вход R.

Параллельный код для предварительной установки счетчика поступает на входы Sy .. •S'„. Сигнал разрешения параллельной загрузки М останавливает счет и позволяет подготовленным на входах So.. S^ данным загрузиться в счетчик в мо­мент прихода очередного тактового импульса С. Счетчик считает тактовые импульсы, поступающие на вход С, если присутствует сигнал разрешения счета на входе V.

Выходными сигналами счетчика обычно являются сигналы, снимаемые с выхо­дов отдельных разрядов Qi . Qn, сигнал окончания счета или сигнал переноса Р.

Асинхронные счетчики Асинхронный суммирующий счетчик можно выпол­нить на счетных триггерах любого типа. В большинстве случаев для этих целей

используют JK- или Д-триггеры в счетном режиме (см. лекцию 13) Простейший  четырех­разрядный счетчик на D-триггерах состоит из соединенных последо­вательно четырех счет­ных триггеров, таким образом, что выход Qi, каждого триггера соеди­нен с входом C^+i после­дующего   (рис. 14.2 я). При поступлении счет-Hbix импульсов на вход С] триггеры счетчика

Рис 14 1 Обобщенная схема счетчика импульсов

будут изменять свои состояния, описываемые последовательно возрастающими двоичными числами. В табл. 14.1 приведена последовательность состояния выхо­дов триггеров такого счетчика.

Для приведения счетчика в начальное состояние используется сигнал сброса R, поступающий одновременно на все входы R триггеров.

При построении асинхронного вычитающего счетчика достаточно заменить выходы Q триггеров на прямые выходы Q. В этом случае при поступлении им­пульса сброса R на всех выходах счетчика установятся единичные уровни, а при поступлении счетных импульсов на вход С, триггеры счетчика будут изменять свои состояния, описываемые последовательно убывающими двоичными числами.

Для построения асинхронного реверсивного счетчика, который может рабо­тать как в режиме суммирования, так и в режиме вычитания, можно с помощью логической схемы обеспечить подачу сигналов с инверсного выхода Q при сумми­ровании или с прямого выхода Q при вычитании от предыдущего триггера на счетный вход последующего, как показано на рис. 14.2 в. Эта схема включается между выходом одного разряда счетчика и входом другого и, в зависимости от управляющих сигналов — сложение (U) или вычитание (D), на вход последующе­го разряда поступает сигнал переноса Р или сигнал займа Z.

В асинхронном счетчике с приходом каждого последующего импульса на вход Ci переключаются сразу несколько триггеров. Однако переключение этих триггеров происходит не одновременно, а с некоторой задержкой относительно друг друга. Это приводит к задержке в установлении выходного кода после по­ступления счетного импульса на вход С. При большом числе разрядов счетчика задержка выходного сигнала может быть значительной и сравнимой с периодом поступления счетных импульсов на вход Ci.

Как видно из временных диаграмм, приведенных на рис. 14.2 я, триггеры в асинхронном последовательном счетчике работают с различной частотой

Таблица 14.1 Состояния выходов четырехразрядного асинхронного двоичного счетчика

я

а

а

Q,

Ci

п

Q,

6,

Q,

6,

о

о

о

0

0

8

1

0

0

0

1

о

о

0

1

9

1

0

0

1

2

о

о

1

0

10

1

0

1

0

3

о

о

1

1

11

1

0

1

1

4

о

i

0

0

12

1

1

0

0

5

о

i

0

1

13

1

1

0

1

6

о

i

. 1

0

14

1

1

1

0

7

о

i

1

1

15

1

1

1

1

Рис. 14.3 Схемы одноразрядных синхронных счетчиков' суммирующего (а) и вычитающего (б)

Синхронные счетчики. Для построения синхронных счетчиков используют различные типы счетных синхронных триггеров. Схемы одноразрядных синхрон­ных счетчиков приведены на рис. 14.3. Эти схемы реализованы на синхронных счетных триггерах и логических элементах И для формирования сигналов перено­са Р или займа Z. Схема одноразрядного синхронного суммирующего счетчика, приведенная на рис. 14.3 а, реализована подключением счетного входа С, к счет­ному входу триггера, а для формирования сигнала переноса Р использовано логи­ческое произведение сигнала разрешения счета V и выходного сигнала Q, т. е. Р= VQ. Переключение триггера происходит по положительному перепаду сигнала на входе С и при наличии сигнала разрешения на входе V. При этом на выходе триггера Q и выходе переноса Р устанавливаются уровни логической единицы. При отрицательном перепаде сигнала на входе С состояние триггера не изменяет­ся. Очередное переключение триггера произойдет только по новому положитель­ному перепаду импульса на входе С, при наличии сигнала разрешения на входе V. Таким образом, счетная ячейка обеспечивает синхронное деление на два частоты входных импульсов.

Двоичная вычитающая ячейка от­личается от суммирующей тем, что пря­мой выход Q заменен на инверсный вы­ход Q. На выходе такой ячейки форми­руется сигнал займа Z = VQ.

Одноразрядный реверсивный счет­чик реализуется по схеме, приведенной на рис. 14.4. Для изменения направ­ления счета и формирования сигналов переноса или займа использована ло­гическая схема 2И-ИЛИ. Для изменения направления счета введен специальный вход UID (Up/Down): при UID= схема работает аналогично счетчику, изобра-

Рис. 14.4 Одноразрядный синхронный реверсивный счетчик

женному на рис. 14.3 б, т. е. является суммирующим счетчиком, а при U/D= 0 она аналогична схеме, изображенной на рис. 14.3 б, т. е. переходит в режим вычита­ния. Использование этих ячеек позволяет реализовать многоразрядные синхрон­ные счетчики.

Схема четырехразрядного суммирующего двоичного синхронного счетчика с параллельным переносом приведена на рис. 14.5. Она отличается от счетчиков с каскадным соединением разрядов тем, что счетные импульсы поступают на так­товые входы С всех триггеров счетчика одновременно. При этом сигналы раз­решения счета формируются в логических элементах И как произведение сигнала разрешения счета V и сигналов Q с прямых выходов всех предыдущих триггеров.

Быстродействие счетчиков с параллельным переносом выше быстродействия декадных счетчиков. Минимальный период следования синхроимпульсов опреде­ляется суммой

где Тт — время задержки триггера, Тд — время задержки логической схемы. По сравнению с последовательным счетчиком максимальная частота счета параллель­ного счетчика увеличивается примерно в (и-1) раз и не зависит от числа каска­дов. В некоторых случаях функцию логических элементов можно реализовать на внутренних элементах триггера, тогда можно считать, что т„ = 0 и быстродействие счетчика зависит только от задержки триггера, т. е. 7ст=Тт.

Регистры сдвига. Триггерным регистром сдвига называют совокупность триг­геров с определенными связями между ними, при которых они действуют как единое устройство. В регистрах сдвига организация этих связей такова, что при подаче тактового импульса, общего для всех триггеров, выходное состояние каж­дого триггера сдвигается в соседний. В зависимости от организации связей этот сдвиг может происходить влево или вправо:

Рис. 14.5. Схема четырехразрядного синхронного счетчика с параллельным переносом

Ввод информации в регистр может выполняться различными способами, од­нако наиболее часто используют параллельный или последовательный ввод, при которых ввод двоичного числа осуществляется или одновременно во все разряды регистра, или последовательно во времени по отдельным разрядам. В счетчиках импульсов находят применение сдвигающие регистры с последовательным вводом и выводом и со сдвигом вправо. На рис. 14.6 а приведена схема четырехразрядно­го регистра сдвига, выполненного на ^-триггерах. В этой схеме каждый выход Q триггера соединен со входом S последующего разряда, а каждый выход Q — с входом R. Тактовые входы всех триггеров соединены вместе, и поступление сиг­нала синхронизации осуществляется одним общим импульсом через логический элемент И-НЕ (DD7). Состояние первого триггера определяется входными сигна­лами на входах Х и XI логического элемента И-НЕ (DD5). На вход XI подается текущая информация, а на вход Х2 сигнал разрешения ее передачи. Логические элемент НЕ (DD6) используется для инвертирования входного сигнала, подавае­мого на вход S.

На рис. 14.6 б приведены временные диаграммы выходных сигналов триг­геров, а в табл. 14.2 — состояния регистра сдвига при записи в первый разряд регистра единичного сигнала. Если при поступлении первого тактового импульса на входах XI и XI установлены сигналы Х~=Х1=, которые затем снимаются к приходу второго тактового импульса, то в результате в первый триггер будет записан сигнал Q = 1. С приходом второго тактового импульса в первый триггер

Рис. 14.6. Схема регистра сдвига (а) и его выходные сигналы (б)

Таблица 142

Состояние выходов четырехразрядного счетчика Джонсона

л

е,

Q,

Q,

Q,

о

i

о

о

о

1

о

i

о

о

2

о

о

1

о

3

о

о

о

i

Рис. 14.8. Схема кольцевого счетчика с автоматической коррекцией начального состояния.

что и регистр сдвига, т. е. Кс=п. Для увеличения модуля счета можно или увели­чивать количество триггеров в кольце, или включать счетчики последовательно. Так, например, счетчик на 10 импульсов (Л^Ю) можно реализовать последова­тельным соединением одного счетного триггера и кольцевого счетчика из пяти триггеров.

Основным недостатком кольцевых счетчиков является их низкая помехозащи­щенность. Например, если под действием помехи исчезнет записанная в счетчик единица, то все триггеры окажутся в нулевом состоянии и счетчик работать не сможет. Для устранения подобных сбоев используются различные способы кор­рекции состояния счетчика. Схема счетчика с автоматической коррекцией состоя­ния приведена на рис. 14.8. В этой схеме независимо от того, в каком состоянии после включения окажутся триггеры, после четырех тактовых импульсов на входе С установится требуемое выходное состояние (1000).

Счетчики Джонсона. Разновидностью кольцевых счетчиков являются счетчи­ки Джонсона. В этих счетчиках вход регистра, соединен не с выходом б, а с инвер­сным выходом Q. В результате, когда на вход счетчика поступают тактовые им­пульсы, то вначале все разряды счетчика заполняются единицами, а затем — ну­лями. Схема четырехразрядного счетчика Джонсона приведена на рис. 14.9, а состояние его выходов приведено в табл. 14.3.

Таблица 14.3 Состояние выходов четырехразрядного счетчика Джонсона

и

е.

е,

Q.

S.

п

е.

G,

е,

е,

о

i

•о

0

0

4

о

1

i

i

1

i

i

0

0

5

о

0

i

i

2

i

i

1

0

6

о

0

о

i

3

i

i

1

1

7

о

0

о

о

Как следует из табл. 14.3, модуль счета счетчика Джонсона в два раза больше модуля счета простого кольцевого счетчика, т. е. -Кс=2". В счетчике Джонсона, как и в других кольцевых счетчиках, могут быть сбои, вызванные помехами. Для кор­рекции нарушений, вызванных сбоями, также используются способы, с помощью которых производится переход из любой запрещенной комбинации в одну из раз­решенных.

Счетчики Джонсона широко используются в делителях частоты импульсов, генераторах случайных чисел, в устройствах памяти и др. На базе счетчика Джон­сона можно легко реализовать счетчики с любым четным модулем счета. При необходимости иметь нечетное значение модуля счета можно на вход первого разряда подавать вместо сигнала g„ сигнал QnQn i, как показано на рис. 14.96. При этом из набора выходных состояний счетчика Джонсона исключается одна кодовая комбинация, составленная из нулей.

Двоично-десятичные, или декадные счетчики могут быть реализованы на базе двоичных счетчиков при помощи взаимной связи между отдельными триггерами, входящими в счетчик. Схема декадного счетчика, построенная на базе рассмот­ренного ранее четырехразрядного двоичного счетчика (рис. 14.2), изображена на рис. 14.10 а. В этом счетчике взаимные соединения триггеров выполнены так, что первые девять счетных импульсов повторяют выходные сигналы триггеров для двоичного счетчика. Последний счетный импульс возвращает с счетчик в исход­ное состояние. Сигналы на выходах такого триггера приведены на рис. 14.106.

Рис. 14.9. Схема четырехразрядного счетчика Джонсона с четным (а) и нечетным (б) модулем счета

Рис 14 10 Схема декадного счетчика на счетных триггерах (а) и сигналы на его выходах (б)

Как следует из временной диаграммы, сигналы на выходах счетчика для девя­ти импульсов совпадают с временной диаграммой, приведенной на рис 14 2 в. Однако десятый импульс, вместо того чтобы установить счетчик в состояние 1010, как у двоичного счетчика, через дополнительные элементы и обратные связи воз­вращает четвертый триггер в нулевое состояние (Q^O) и препятствует установке второго триггера в единичное состояние, сохраняя его нулевое состояние (Qt^O) В результате после десяти импульсов состояние декадного счетчика будет такое же, как и до начала счета

Это обеспечивается блокированием второго, а значит, и третьего триггера через элемент DD5 с выхода DD4, а также переключением триггера DD4 через элементы DD6 и DD7 отрицательным перепадом с выхода Q Выходные состоя­ния декадного счетчика приведены в табл 144 Такой десятичный счетчик обо­значают как «8 + 2», поскольку выход Q^ сохраняет нулевое состояние на протяже­нии первых восьми входных пульсов и переключается в единичное состояние во время действия двух последних импульсов. К таким счетчикам относятся многие интегральные десятичные счетчики, такие как К155ИЕ2 и др

Подобным образом можно сформировать счетчик с любым модулем счета Кс Если используется счетчик из п триггеров на 2" возможных состояний, то за счет

Рис 14 10 Схема декадного счетчика на счетных триггерах (а) и сигналы на его выходах (б)

Как следует из временной диаграммы, сигналы на выходах счетчика для девя­ти импульсов совпадают с временной диаграммой, приведенной на рис 14 2 в. Однако десятый импульс, вместо того чтобы установить счетчик в состояние 1010, как у двоичного счетчика, через дополнительные элементы и обратные связи воз­вращает четвертый триггер в нулевое состояние (Q^O) и препятствует установке второго триггера в единичное состояние, сохраняя его нулевое состояние (Qt^O) В результате после десяти импульсов состояние декадного счетчика будет такое же, как и до начала счета

Это обеспечивается блокированием второго, а значит, и третьего триггера через элемент DD5 с выхода DD4, а также переключением триггера DD4 через элементы DD6 и DD7 отрицательным перепадом с выхода Q Выходные состоя­ния декадного счетчика приведены в табл 144 Такой десятичный счетчик обо­значают как «8 + 2», поскольку выход Q^ сохраняет нулевое состояние на протяже­нии первых восьми входных пульсов и переключается в единичное состояние во время действия двух последних импульсов. К таким счетчикам относятся многие интегральные десятичные счетчики, такие как К155ИЕ2 и др

Подобным образом можно сформировать счетчик с любым модулем счета Кс Если используется счетчик из п триггеров на 2" возможных состояний, то за счет Таблица 14.4 Состояние выходов десятичного счетчика

п

а

Q,

0-г

е,

п

е.

Q,

<2г

е,

о

о

о

о

о

5

о

1

0

i

1

о

о

о

1

6

0

1

1

о

2

о

о

1

о

7

0

1

1

i

3

о

о

1

1

8

1

0

0

о

4

о

1

о

о

9

1

0

0

i

обратных связей с дополнительными логическими элементами можно получить любое значение Кс<2".

Интегральные микросхемы счетчиков. Промышленность выпускает большое количество интегральных микросхем счетчиков, построенных на транзисторно-транзисторной логике (ТТЛ), эмиттерно-связанной логике (ЭСЛ) и комплементар­ных полевых транзисторах (КМОП). В табл. 14.5 приведены основные типы счетчиков различных серий интегральных микросхем. Условное обозначение интегральных микросхем счетчиков состоит из обозначения серии (трех или четы­рех цифр), функционального назначения (двух букв ИЕ) и порядкового номера разработки (от одной до трех цифр).

Основные параметры интегральных микросхем счетчиков можно разделить на две группы: статические и динамические. К статическим параметрам относятся входное напряжение высокого U^ и низкого t/2x уровней, ток потребления от источника питания, напряжение питания, коэффициент разветвления Л'раз и модуль счета Кс. К динамическим параметрам счетчиков относятся: время г0'' переключе­ния из низкого уровня в высокий, время переключения г1'0 из высокого уровня в

Таблица 14.5 Параметры интегральных микросхем счетчиков импульсов

Наименование счетчика

Тип логики

Функциональное назначение

Модуль счета К^

Максимальная частота / ., МГц""

К155ИЕ5

ТТЛ

Асинхронный двоичный

16

10

К555ИЕ18

ттлш

Синхронный двоичный

16

25

К155ИЕ7

ТТЛ

Реверсивный двоичный

16

25

К561ИЕ8

КМОП

Счетчик Джонсона с дешифратором

10

2

К561ИЕ11

КМОП

Двоичный реверсивный

16

5

К500ИЕ137

ЭСЛ

Синхронный реверсивный десятичный

10

125

Таблица 146 Параметры интегральных микросхем регистров

Наименование регистра

Тип логики

Функциональное назначение

Максимальная тактовая частота, МГц

К155ИР1

ТТЛ

Четырехразрядный сдвиговой

25

К155ИР13

ТТЛ

Универсальный восьмиразрядный синхронный сдвиговой

30

К531ИР11

ттлш

Четырехразрядный сдвиговой

70

К561ИР9

кмоп

Четырехразрядный последовательно-параллельный

5

Лекция "5.5 Художественная культура и искусство средних веков" также может быть Вам полезна.

К500ИР141

эсл

Универсальный четырехразрядный сдвиговой

150

низкий и максимальная частота счета /„акс- Большинство перечисленных парамет­ров определяется серией микросхем и типом применяемой логики.

Интегральные микросхемы регистров. В наименовании регистров их функцио­нальное назначение обозначается буквами ИР. В остальном условное обозначение регистров совпадает с обозначением счетчиков. В табл. 14.6 приведены некоторые типы регистров различных серий

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее