Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Физические основы электроники (ФОЭ) » Физические эффекты в проводниках

Физические эффекты в проводниках

2021-03-09СтудИзба

ТЕМА 3 физические эффекты в проводниках

3.1 Классификация проводников

Особенности проводимости металлов, тепловое и дрейфовое движение электропроводимости.

В электронной промышленности широко применяются металлы и их сплавы, из которых делают проводники.

Классифицируются по агрегатному состоянию: газообразные, жидкие, твёрдые.

Газообразные – пары веществ и газы при напряжённости электрического поля, которое обеспечивает ионизацию молекул. В них электрический ток создаётся как электронами, так и ионами. Используются в газоразрядных приборах.

Жидкие – растворы различных солей, кислот, щелочей, а также их расплавы (электролиты). Ток связан с переносом ионов, при этом состав электролита изменяется, а на электродах, погружённых в электролит, происходит выделение вещества из раствора.

Твёрдые – это металлы, которые занимают в таблице Менделеева более 75%. Ток в них создаётся только электронами, а поэтому нет переноса вещества от одного электрода к другому.

Рекомендуемые материалы

По применению металлические материалы  подразделяются:

- металлы высокой проводимости;

- сплавы высокого сопротивления.

Металлы высокой проводимости: серебро, медь, алюминий, железо, золото.

Сверхпроводники (при низких t0 C): алюминий, ртуть, свинец, ниобий, соединения с оловом, титаном, цирконием.

Сплавы высокого сопротивления:

- медно-марганцовые (манганин);

- медно-никелевые (константаны);

- железа, никеля и хрома (нихромы).

Электронная проводимость металлов

Элементы первой группы таблицы Менделеева одновалентны. Валентный электрон слабо связан со своим ядром и при любых внешних воздействиях разрывает связь с ядром и становится свободным. Поэтому в узлах кристаллической решётки находятся положительно заряженные атомы (ионы), а между ними перемещаются свободные электроны.

Ионы и электроны находятся в беспорядочном движении. Энергия этого движения представляет внутреннюю энергию тока.

Движение ионов, образующих решётку, состоит лишь в колебаниях около своих положений равновесия. Свободные электроны могут перемещаться по всему объёму металла. При отсутствии внутри металла электрического поля, движение электронов хаотично, в каждый момент скорости различных электронов различны и имеют всевозможные направления. Электроны подобны газу, поэтому их часто называют электронным газом.

Тепловое движение не вызывает никакого тока, так как вследствие полной хаотичности в каждом направлении будет двигаться столько же электронов, сколько в противоположном, и поэтому суммарный заряд, переносимый через любую площадку внутри, будет равен нулю.

Если на концах проводника создать разность потенциалов, т.е. создать внутри электрическое поле, то на каждый электрон будет действовать сила, каждый электрон  получит дополнительные скорости, направленные в одну сторону. Движение станет направленным, т.е. будет электрический ток.

Вывод:

Хаотическое движение обусловлено воздействием внешних факторов (тепла). Направленное движение за счёт разности потенциалов называется дрейфовым.

Проводимость разных металлов различная, так как обусловлена:

- различным количеством свободных электронов в единице объёма;

- условиями движения электронов, связанных с различной длинной свободного пробега, т.е. пути, проходимого в среднем электроном между двумя соударениями с ионами.

На практике используют понятия: удельная проводимость и удельное сопротивление:

s - удельная проводимость, МСu/м

r - удельное сопротивление, Ом*мм2 / м

r= 1/s = 1/еnm = 2muт2n lср,

где е – заряд электрона = 1,6 * 10-19;

      n – количество свободных электронов;

      m - подвижность электрона, обусловленная электрическим полем;

      m – масса электрона = 9,1 * 10-31 кг;

          lср- средняя длина свободного пробега;

      uтсредняя скорость теплового движения.

Значения  uт , n, в различных проводниках примерно одинаковы, например:

nмеди= 8,5*1028м-3, nалюм= 8,3*1028м-3, значение скорости теплового движения приблизительно uт = 105 м/с.

Для каждого металла существует определённый температурный коэффициент сопротивления при изменении Т0 на 10 С, отнесённый к 10м начального сопротивления (a):

a = R2-R1/ R1(T2-T1)  [1/0C] ,

где  R1 – сопротивление при T1

R2 – сопротивление при T2

отсюда R2 = R1 [1+a (T2-T1)]

Это соотношение справедливо для температур 100-1500С.

3.2 Полукристаллические и аморфные металлы и сплавы. Особенности металлов в тонкопленочном состоянии

Поликристаллы состоят из мелких монокристаллов: медь, серебро, алюминий, натрий.

3.2.1 Медь

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

1) малое удельное сопротивление (из всех металлов только серебро имеет ρ несколько меньшее, чем медь);

2) достаточно высокая механическая прочность;

3) удовлетворительная коррозионная стойкость; медь окисляется на воздухе даже в условиях высокой влажности значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах (рисунок 3.3);

4) хорошая обрабатываемость; медь прокатывается в листы и ленты и протягивается в проволоку;

5) относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. Медь, предназначенная для электротехнических целей, обязательно подвергается электролитической очистке, Полученные в результате электролиза катодные пластины меди переплавляют в болванки массой 80-90 кг, которые прокатывают и протягивают, создавая изделия требующегося поперечного сечения.

При изготовлении проволоки болванки сначала подвергают горячей прокатке в катанку диаметром 6,5-7,2 мм, которую затем протягивают без подогрева, получая проволоку нужных диаметров.

В качестве проводникового материала используют медь марок Ml и МО. Медь марки Ml содержит 99,9% Сu, а в общем количестве примесей (0,1%) кислорода должно быть не более 0,08%. Наличие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки МО, в которой содержится не более 0,05% примесей, в том числе не свыше 0,02% кислорода. Из меди марки АЛО может быть изготовлена особо тонкая проволока (до диаметра 0,01 мм).


а - удельное сопротивление, мкОм*м; б – предел прочности при растяжении; в – относительное удлинение при разрыве

Рисунок 3.1 – Зависимости параметров меди от температуры отжига (при продолжительности отжига 1ч)

При холодной протяжке получают твердую (твердотянутую) медь (МТ), которая благодаря наклепу имеет высокий предел прочности при растяжении, если удлинение мало, а также твердость и упругость; при изгибе проволока из твердой меди несколько пружинит.

Если же медь подвергнуть отжигу, т. е. нагреву до нескольких сотен градусов с последующим охлаждением, то получится мягкая (отожженная) медь (ММ), которая сравнительно пластична, имеет пониженную твердость и небольшую прочность, но весьма большое удлинение при разрыве и (в соответствии с рассмотренными общими закономерностями) более высокую удельную проводимость.

Влияние отжига на свойства меди показано на рисунке 3.1. Изменение механических свойств - σ р и Δl/l при отжиге выражено сильнее, чем изменение ρ.

Электропроводность меди весьма чувствительна к наличию примесей (рисунок 3.2).

Твердую медь употребляют там, где надо обеспечить высокую механическую прочность, твердость и сопротивляемость истиранию: для контактных проводов, для шин распределительных устройств, для коллекторных пластин электрических машин и пр.

Мягкую медь в виде проволок круглого и прямоугольного сечения применяют главным образом в виде токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и пластичность (отсутствие «пружинения» при изгибе), а прочность не имеет существенного значения.

Медь - сравнительно дорогой и дефицитный материал. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо собирать; и важно не смешивать их с другими металлами, а также с менее чистой (не электротехнической) медью, чтобы можно было их переплавить и вновь использовать в этом качестве. Медь как проводниковый материал в ряде случаев заменяют другими металлами, чаще всего алюминием.

В отдельных случаях помимо чистой меди в качестве проводникового материала применяют ее сплавы с небольшим содержанием легирующих примесей: Sn, Si, P, Be, Cr, Mg, Ca и др. Такие сплавы, называемые бронзами, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Рисунок 3.2 – Влияние различных примесей на удельную проводимость γ меди

σр бронз может доходить до 800 - 1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п.

Введение в медь кадмия при сравнительно малом снижении удельной проводимости у дает существенное повышение механической прочности и твердости. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (σр до 1350 МПа).

Латунь (сплав меди с цинком) обладает достаточно высоким относительным удлинением при повышенном пределе прочности на растяжение по сравнению с чистой медью. Это дает латуни технологические преимущества при обработке штамповкой, глубокой вытяжкой и т.п.

Латунь применяют в электротехнике для изготовления различных токопроводящих деталей.

3.2.2 Алюминий

Алюминий - важнейший представитель так называемых легких металлов, т. е. металлов с плотностью менее 5000 кг/м3: плотность литого алюминия около 2600, прокатанного - 2700 кг/м3. Таким образом, алюминий приблизительно в 3,5 раза легче меди.

Удельное сопротивление ρ алюминия примерно в 1,63 раза больше ρ меди. Поэтому замена меди алюминием не всегда возможна, особенно в радиоэлектронике. Однако если сравнить по массе два отрезка алюминиевого и медного проводов одной и той же длины и одного и того же сопротивления, то окажется, что алюминиевый провод хотя и толще медного, но легче его приблизительно в 2 раза, Поэтому для изготовления проводов одной и той же проводимости на единицу длины алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Важно и то, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий марки А1, содержащий не более 0,5% примесей. Еще более чистый алюминий марки AB00 (не более 0,03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты AB0000 содержит не более 0,004% примесей.

Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям для меди. Из алюминия может прокатываться тонкая (до 6 - 7 мкм) фольга, применяемая в качестве обкладок в бумажных и пленочных конденсаторах.

Алюминий на воздухе активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и сильно затрудняет пайку алюминия обычными способами. Для пайки алюминия применяют специальные пасты - припои пли используют ультразвуковые паяльники.

3.2.3 Железо

Сталь (железо) как наиболее дешевый и доступный металл, обладающий высокой механической прочностью, в ряде случаев используют в качестве проводникового материала. Даже чистое железо имеет более высокое по сравнению с медью и алюминием удельное сопротивление ρ (порядка 0,1 мкОм*м); значение ρ стали, т. е. железа с примесью углерода и других элементов, еще выше.

При переменном токе в стали, как магнитном материале, сильно сказывается поверхностный эффект, поэтому активное сопротивление стальных проводников для переменного тока выше, чем для постоянного. Кроме того, при переменном токе в стальных проводниках появляются потери мощности на гистерезис.

Обычная сталь обладает малой коррозионной стойкостью: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала, например цинка.

Железо имеет высокий температурный коэффициент удельного сопротивления ТК ρ. Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный водородом, можно применять в барретерах, т. е. в приборах, в которых используется зависимость сопротивления от силы тока, нагревающего помещенную в них проволоку. Этот прибор сохраняет постоянную силу тока при колебаниях напряжения.

3.2.4 Натрий

Интересным и перспективным проводниковым материалом является металлический натрий. Натрий может быть получен путем электролиза расплавленного хлористого натрия NaCl в практически неограниченных количествах. Удельное сопротивление натрия в 2,8 раза больше ρ меди и в 1,7 раз больше ρ алюминия. Но благодаря очень малой плотности натрия (он легче воды; плотность его примерно в 9 раз меньше плотности меди) провод из натрия при данной проводимости на единицу длины (при нормальной температуре) должен быть значительно легче, чем провод из любого другого металла.

Однако натрий весьма активен химически - он интенсивно окисляется на воздухе и бурно реагирует с водой, кроме того, натрий весьма мягок и имеет малый предел прочности при растяжении и других деформациях. Поэтому натриевый провод должен быть защищен герметизирующей оболочкой, которая должна также придавать проводу необходимую механическую прочность. Натриевые провода и кабели изготовляют в пластмассовых (полиэтиленовых) оболочках, что помимо герметизации и повышения механической прочности провода или кабеля создает его электрическую изоляцию.

3.2.5 Вольфрам

Это чрезвычайно тяжелый твердый металл серого цвета. Среди металлов он обладает наиболее высокой температурой плавления. Получают из руд раличного состава; промежуточным продуктом является вольфрамовая кислота H2WO4, из которой путем восстановления водородом при нагреве до 900°С, получают металлический вольфрам в виде мелкого порошка. Из этого порошка прессуют стержни, которые подвергают сложной термической обработке в атмосфере водорода, ковке и волочению в проволоку (диаметром до 0,01 мм), прокатке в листы и т. п.

Для вольфрама характерна слабая связь между отдельными кристаллами, поэтому сравнительно толстые вольфрамовые изделия хрупки. При механической обработке ковкой и волочением вольфрам приобретает волокнистую структуру.

Рисунок 3.3 – Зависимость скорости окисления металла (количество окисляющегося металла за час с квадратного метра поверхности металла, соприкасающейся с воздухом) от температуры

этим объясняется гибкость тонких вольфрамовых нитей. При уменьшении толщины вольфрамовой проволоки возрастает и ее предел прочности при растяжении σр (примерно от 500-600 МПа для стержней диаметром 5 мм до 3000-4000 МПа для тонких нитей; удлинение при разрыве Δl/l таких нитей - около 4%).

Вольфрам является одним из важнейших металлических материалов электровакуумной техники. Применение вольфрама для изготовления нитей ламп накаливания было впервые предложено русским изобретателем А. Н. Лодыгиным в 1890 г.

Вследствие тугоплавкости и большой механической прочности при повышенных температурах вольфрам можно использовать при температуре выше 2000°С, но лишь в высоком вакууме или в атмосфере инертного газа (азот, аргон и т. п.), так как уже при нагреве до температуры в несколько сот градусов Цельсия в присутствии кислорода он сильно окисляется (рисунок 3.3).

Вольфрам применяют также для изготовления контактов.

К преимуществам вольфрамовых контактов можно отнести:

а)  устойчивость в работе;

б)  малый механический износ ввиду высокой твердости материала;

в)  способность противостоять действию электрической дуги и отсутствие привариваемости вследствие большой тугоплавкости;

г)  малую подверженность электрической эрозии (т. е. износу с образованием кратеров и наростов в результате местных перегревов и плавления металла).

Недостатками вольфрама как контактного материала являются: а) трудная обрабатываемость; б) образование в атмосферных условиях оксидных пленок; в) необходимость в больших давлениях для обеспе­чения малых значений электрического сопротивления контакта.

Для контактов с большими значениями разрываемой мощности используют металлокерамические материалы. Заготовку прессуют из порошка вольфрама под большим давлением, спекают в атмосфере водорода, получая достаточно прочную, но пористую основу, которую затем пропитывают расплавленным серебром или медью для увеличения проводимости.

3.2.6 Молибден

Молибден широко применяют в электровакуумной технике при менее высоких температурах, чем вольфрам. Но накаливаемые детали из молибдена также должны работать в вакууме, в инертном газе или в восстановительной атмосфере.

Механическая прочность молибдена в очень большой степени зависит от механической обработки материала, вида изделия, диаметра стержней или проволоки и последующей термообработки. Предел прочности при растяжении σр молибдена - от 350 до 2500 МПа, а относительное удлинение при разрыве Δl/l - от 2 до 55%. Плотность молибдена почти в два раза меньше, чем вольфрама.

В электровакуумной технике наиболее распространены марки молибдена МЧ (молибден чистый) и МК (молибден с кремнещелочной присадкой). Последний обладает повышенной механической прочностью при высоких температурах.

Молибден применяют также в качестве материала для электрических контактов.

3.2.7 Благородные металлы

Золото - металл желтого цвета, обладающий высокой пластичностью (относительное удлинение при разрыве 40°С). В электротехнике золото используют как контактный материал для коррозионно устойчивых покрытий, для электродов фотоэлементов, для вакуумного напыления пленочных микросхем и т. п.

Серебро - белый, блестящий металл, стойкий против окисления при нормальной температуре. Серебро имеет самое малое удельное сопротивление ρ (при нормальной температуре). Механические свойства серебряной проволоки: σр около 200 МПа, Δl/l порядка 50%. Такую проволоку используют для изготовления контактов, рассчитанных на небольшие токи.

Серебро применяют также для не посредственного нанесения на диэлектрики, в качестве обкладок в производстве керамических и слюдяных конденсаторов. Для этой цели используют метод вжигания или испарения в вакууме.

Недостатком серебра является склонность к миграции по поверхности и внутрь диэлектрика, на который его наносят, в условиях высокой влажности, а также при высоких температурах. Химическая стойкость у серебра ниже, чем у других благородных металлов.

Платина - металл, практически не соединяющийся с кислородом и весьма стойкий к самым разнообразным химическим реагентам. Платина прекрасно поддается механической обработке, вытягивается в очень тонкие нити и ленты. Предел прочности при растяжении σр платины после отжига - порядка 150 МПа, а Δl/l составляет 30 - 35%.

Платину применяют, в частности, при изготовлении термопар, для измерения высоких температур - до 16000C (в паре со сплавом платинородий), а также при изготовлении пасты, используемой для вжигания электродов на монолитные керамические конденсаторы.

Особо тонкие нити из платины (диаметром около 1 мкм) для подвесок подвижных систем в электрометрах и других чувствительных приборах получают многократным волочением биметаллической проволоки платина - серебро с последующим растворением наружного слоя серебра в азотной кислоте (на платину азотная кислота не действует). Вследствие малой твердости платина редко применяется для контактов в чистом виде, но служит основой для ряда контактных сплавов. Сплавы платины с иридием стойки к окислению и к износу, имеют высокую твердость и допускают большую частоту выключений, однако дороги и применяются только для особо ответственных деталей.

Палладий по многим свойствам близок к платине и в ряде случаев служит ее заменителем; его используют в электровакуумной технике для поглощения водорода. Палладий и его сплавы с серебром и медью применяют в качестве контактных материалов. Палладиевую пасту, как и платиновую, используют для нанесения электродов на керамические конденсаторы.

Палладий в отожженном состоянии имеет предел прочности при растяжении σр порядка 200 .МПа при относительном удлинении при разрыве Δl/l до 40%.

3.2.8 Никель и кобальт

Никель - серебристо-белый металл, широко применяемый в электровакуумной технике; его достаточно легко получить в очень чистом виде (99,99% Ni); иногда в него вводят специальные легирующие присадки (кремний, марганец и др.).

Получаемый из руд никель подвергают электролитическому рафинированию. Очень чистый порошкообразный никель можно получить путем термического разложения пентакарбонила никеля Ni (CO)5 при температуре порядка 220° С.

Никель выпускают различных марок (в зависимости от чистоты) в виде полос, пластин, лент, трубок, стержней и проволоки. К положительным свойствам никеля следует отнести достаточную механическую прочность после отжига (σр = 400-600 МПа при Δl/l - 35—50%).

Никель легко поддается даже в холодном состоянии механической обработке: ковке, прессовке, прокатке, штамповке, волочению и т.п. Из никеля могут быть изготовлены различные по размерам, сложные по конфигурации изделия с жестко выдержанными допусками. Стойкость никеля к окислению наглядно видна из рисунка 3.3.

Помимо применения в электровакуумной технике никель используют в качестве компонента ряда магнитных и проводниковых сплавов, а также для защитных и декоративных покрытий и т. п.

Кобальт получают металлургическим путем с последующей очисткой или восстановлением окислов кобальта водородом.

В отожженном состоянии кобальт имеет σр порядка 500 МПа при Δl/l более 50%.

Кобальт мало активен химически. Он находит применение в качестве составной части многих магнитных и жаростойких сплавов, а также сплавов с небольшим температурным коэффициентом длины.

3.2.9 Свинец

Свинец — металл сероватого цвета; имеет на свежем срезе сильный металлический блеск, но затем быстро тускнеет вследствие поверхностного окисления. Он обладает крупнокристаллическим строением; если протравить свинец азотной кислотой, его кристаллы становятся видны даже невооруженным глазом.

Свинец представляет собой мягкий, пластичный, малопрочный металл; предел прочности при растяжении σр всего лишь около 15 МПа при относительном удлинении Δl/l более 55%. Он имеет высокое ρ. Свинец обладает довольно высокой коррозионной стойкостью, поэтому его в больших количествах применяют для изготовления кабельных оболочек, защищающих кабель от влаги; часто свинец для этой цели заменяют весьма чистым (особо пластичным) алюминием, а также пластмассами. Свинец используют также для изготовления плавких предохранителей, пластин свинцовых аккумуляторов и т. д. Его употребляют и как материал, поглощающий рентгеновские лучи. Рентгеновские установки с напряжением 200 и 300 кВ по нормам безопасности должны иметь свинцовую защиту толщиной соответственно 4 и 9 мм.

Свинец и его соединения ядовиты.

3.2.10 Олово

Олово — серебристо-белый металл, обладающий ярко выраженным крупнокристаллическим строением. При изгибе палочки олова слышен треск, вызываемый трением кристаллов друг о друга. Олово является мягким, тягучим металлом, из которого получают путем прокатки тонкую фольгу. Предел прочности при растяжении белого олова колеблется от 16 до 38 МПа.

Кроме обыкновенного (устойчивого при температуре выше 13,2° С) белого олова, кристаллизующегося в тетрагональной системе, существует серое порошкообразное олово (плотность 5,6 Mг/м3). При низких температурах на белом олове появляются серые пятна (выделение серого олова), получившие название «оловянной чумы». При нагреве серое олово снова переходит в белое. Если нагреть олово выше 160° С, то оно переходит в третью (ромбическую) модификацию и становится хрупким.

При нормальной температуре олово на воздухе не окисляется, вода на него не влияет, а разведенные кислоты действуют очень медленно.

Олово используют в качестве защитных покрытий металлов (лужение); оно входит в состав бронз и припоев. Тонкая оловянная фольга (6—8 мкм), применяемая в производстве некоторых типов конденсаторов, обычно содержит присадки: до 15% свинца и до 1% сурьмы для облегчения прокатки и улучшения механической прочности. Оловянно-свинцовую фольгу толщиной 20—40 мкм применяют в качестве обкладок в слюдяных конденсаторах.

3.2.11 Цинк и кадмий

Цинк — светлый металл, получаемый металлургическими методами и очищаемый электролитически. Цинк марки ЦВ (высокоочищенный) содержит не менее 99,99% Zn.

Цинк применяют для защитных покрытий, в качестве составной части латуней и как материал для электродов гальванических элементов. Кроме того, его используют в фотоэлементах и для металлизации бумаги в металлобумажных конденсаторах. Нанесение металлического слоя на бумагу производят путем испарения цинка в вакууме при температуре порядка 600° С.

Кадмий — серебристо-белый металл, являющийся постоянным спутником цинка в его рудах и добываемый как побочный продукт при металлургии цинка; подвергается электролитической очистке.

Кадмий выпускают нескольких марок в зависимости от чистоты (наиболее высокая степень чистоты — 99,997%).

Кадмий применяют для изготовления фотоэлементов и покрытий СВЧ-волноводов вместо серебра. Он входит в состав ряда припоев и бронз, используется в производстве гальванических элементов, а также в атомных реакторах — в качестве замедлителя.

3.2.12 Индий и галлий

Индий — металл с низкой температурой плавления, использующийся в качестве акцепторной примеси и контактного материала в производстве транзисторов и полупроводниковых диодов.

Галлий интересен тем, что он плавится почти при комнатной температуре. Как и индий, его применяют в полупроводниковой технике в качестве легирующей примеси для германия.

Сплавы индия с галлием, имеющие температуру плавления ниже нормальной, используют как жидкие проводниковые материалы для нанесения электродов на различные диэлектрические и полупроводниковые материалы.

3.2.13 Ртуть

Ртуть — единственный чистый металл, при нормальной температуре находящийся в жидком состоянии. Получаемую металлургическим путем ртуть подвергают многократной очистке, заканчивающейся вакуумной перегонкой при температуре порядка 200° С. Ртуть легко испаряется даже при комнатной температуре. Пары ртути отличаются более низким потенциалом ионизации по сравнению с обычными и инертными газами, что и обусловливает применение ртути в газоразрядных приборах.

Ртуть и ее соединения весьма ядовиты; очень вредны пары ртути.

Щелочные и щелочноземельные металлы, магний, алюминий, цинк, олово, свинец, кадмий, платина, золото и серебро растворяются в ртути, образуя амальгамы. Слабо растворяются в ртути медь и никель. Приборы, содержащие ртуть, должны иметь металлическую арматуру из вольфрама, железа или тантала, так как эти металлы не растворимы в ртути.

Ртуть применяют в качестве жидкого катода в ртутных выпрямителях, в ртутных лампах и газоразрядных приборах, в лампах дневного света, а также для ртутных контактов в реле и др.

3.3 Особенности металлов в тонко пленочном состоянии

Применяются для изготовления постоянных и отчасти переменных резисторов.

От состава пленки можно разделить:

- материалы на основе металлов и их соединений (оксидов, силицидов, карбидов);

- неметаллические (углеродистые) материалы.

Пленочные на основе металлов и их соединений. Используются в микроэлектронике при изготовлении: резисторов и резистивных элементов. Пленки, содержащие кремний, тантал, хром и нихром обладают повышенным значением удельного поверхностного сопротивления и низким значением температурного коэффициента. Наносят пленки на основание (подложку) из ситалла, стекла или другом диэлектрике, пленки и двуокиси олова. Как наносят – путем термического разложения хлористого олова. Как наносят – путем термического разложения хлористого олова.

Термоэлектронная эмиссия. Вторичная эмиссия. Внутри металла свободные электроны находятся в непрерывном тепловом движении, но из металла они не вылетают, так как есть какие-то силы, препятствующие их вылету из металла.

Рисунок 3.4 – Разность потенциалов на границе металл-вакуум

Металлическая пластина – электрически нейтральная. Если электроны покинут поверхность металла, то металл заряжается положительно, а около границы раздела металл-вакуум, образуется скопление электронов. Между этими электронами и положительными ионами (находящимися внутри металла) образуется электрическое поле. Для последующих электронов, стремящихся покинуть металл, поле будет тормозящим, а для электронов покинувших металл – ускоряющим и будет притягивать их обратно в металл.

Чтобы покинуть металл электрон должен совершить определенную работу по преодолению сил обратного притяжения к металлу. Эта работа носит название работы выхода.

Процесс выхода электрона из металла в окружающую среду получил название электронной эмиссии.

Эмиссия возможна только тогда, когда кинетическая энергия электрона (находящегося в металле) больше или равна работе выхода

где    е – заряд электрона, Кл;

         φ – разность потенциалов, В

         Значение работы выхода у разных металлов разные:

цезий – 1,81 эВ

барий – 2-2,52 эВ

торий – 3,4 эВ

ртуть – 4,4 эВ

вольфрам – 4,52

Виды эмиссии. Чтобы электроны могли выйти из металла, необходимо сообщить им из вне необходимую дополнительную энергию, достаточную для преодоления противодействующих сил. В зависимости от способа сообщения дополнительной энергии различают виды эмиссии:

-термоэлектронную – за счет нагрева катода;

-фотоэлектронную – за счет энергии света;

-электростатическую (автоэлектронную), при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов из металла;

-вторичную – результат бомбардировки катода потоком первичных электронов и ионов.

Катодом называется тело излучающие электроны.

Особенности термоэлектронной эмиссии. При комнатной  температуре число электронов, энергия которых превышает работу выхода, ничтожно мала. Если нагреть катод до определенной температуры, то произойдет эмиссия. Рассмотрим зависимость тока эмиссии от температуры (формула Дэшмана)

,

где    S – площадь поверхности катода, излучающего электроны, см²;

         А – постоянная для данного катода;

         Т – абсолютная температура катода;

         е – (2,72) основание натурального логарифма

        e φ – работа выхода, эВ

         К – постоянная Больцмана = 8,62 * 10эВ/градус

Рисунок 3.5 – Эмиссия вольфрамого катода

Эмиссия начинается лишь при температуре 2200°, и при дальнейшем увеличении Т° растет очень быстро.

У разных катодов разная работа выхода, а поэтому ток эмиссии начинается при других температурах больших или меньших.

Параметры катодов. Типы катодов. Максимальная плотность тока эмиссии, эффективность, рабочая температура, долговечность.

Эффективность – ток эмиссии на один ватт мощности, затраченной на нагрев катода.

Н = Ie/Pнагрева [мА/Вт]

Чем ниже рабочая Т°, тем меньше мощности необходимо для нагрева катода, поэтому необходимо уменьшать работу выхода.

Долговечность – это время, в течение которого катод может непрерывно работать сохраняя свои важнейшие параметры.

Типы катодов. У вольфрамовых катодов большая работа выхода, высокая рабочая температура, малая эффективность.

Вольфрамобариевые катоды

Вольфрам покрывают пленкой бария, атомы бария диффузируют через поры вольфрама внутрь его.

Работа выхода бария меньше вольфрама, а поэтому электроны бария, проникнув в вольфрам заряжают его поверхность отрицательно, а атомы бария заряжаются положительно. Теперь электрическое поле для электронов вольфрама становится ускоряющим, что уменьшает работу выхода. Такие катоды называют активированными, рабочая Т° резко уменьшается и приблизительно около 710°C, что повышает экономичность, так как повышается эффективность, увеличивается долговечность.

Недостаток: разрушается активизирующий слой под действием ионов, поэтому в  требуется высокий вакуум.

Нельзя перекаливать катоды, так как разрушается активизирующий слой.

Оксидный катод (полупроводниковый)

На никель или вольфрам наносится слой смеси оксидов щелочноземельных металлов – бария, кальция, стронция.

Рабочая температура Т°=700-800°С, эффективность до 100 мА/Вт, срок службы до 10-15 тыс. часов, работа выхода составляет до 1,2 эВ.

Эмиссия зависит от действия внешнего электрического поля (эффект Шоттки). Электрическое поле проникает вглубь оксидного слоя и уменьшает работу выхода, что увеличивает термоэмиссию при Т° = const.

Недостаток оксидных катодов: недокал и перекал приводят к перегреву оксида и его разрушению.

Вторичная эмиссия

Она может осуществляться как с нагретых так и с холодных катодов.

Рисунок 3.6 – Получение вторичных электронов

Если создать n1 первичных электронов с первичного катода с помощью термоэмиссии, то за счет ускоряющего электрического поля между катодами (φк2>φ к1), первичные электроны с ускорением будут двигаться в сторону вторичного и его бомбардировать. Так как электроны получают дополнительную энергию, то они выбивают из второго катода вторичные электроны.

Важный показатель – коэффициент вторичной эмиссии σ = n2/n1, который показывает сколько электронов выбивает первичный электрон из второго катода. σ ≈ 1-10 раз и более

Этот эффект находит широкое применение в различных электронных приборах.

3.4 Сверхпроводящие проводники. Статический эффект Джозефсона. Применение сверхпроводимости

 

Сопротивление веществ зависит от состояния кристаллической решетки. При высокой Т° правильность решетки нарушается тепловым движением атомов с понижением Т° эта правильность решетки восстанавливается и способствует уменьшению сопротивления. При очень низких Т° сопротивление достигает остаточного значения, которое почти не зависит от Т° и обусловлено наличием примесей и дефектами кристаллической решетки. При Т° 4,12°К (-268,88) у ртути внезапно исчезает электрическое сопротивление. Это явление назвали сверхпроводимостью.

Сейчас обнаружена сверхпроводимость у более 26 элементов (олово, цинк, свинец…)

Сверхпроводимость обнаружена и в некоторых сплавах, составные части которых сами по себе не обладают такими свойствами. Например, сплавы висмута с натрием, калием. Сейчас сверхпроводимость обнаружена у 500 сплавов и соединений.

Кристаллическая Т° перехода образует почти в два десятка кельвинов: 18К – для химического соединения Nb3Sn и 0,14 – для иридия, 23,2К –германид ниобия.

Пленки сверхпроводящих материалов обладают особыми свойствами, у них критическая температура превышает Т° объемных материалов.

Основная задача увеличить Т°кр, хотя бы до 77,4К, что позволит применять для охлаждения сжиженный азот (77,4К), а это удешевить и упростить устройства.

Применение

На основе пленочных материалов созданы запоминающие устройства, накопителей энергии, волноводов с малым затуханием, малогабаритные электрические машины, трансформаторы с высоким КПД.

Созданы сверхпроводящие соленоиды, создающие магнитные поля 8*10А/м.

Возможно создать линии электропередач без потерь на нагрев.

Электромагнит (постоянный) – электрический ток, однажды наведенный в сверхпроводящем контуре, будет длительно (годами) циркулировать по этому контуру без заметного уменьшения своей силы и притом без всякого подвода энергии извне (расходы на охлаждение надо учесть).

Это идеальные диамагнетики, т.е. их магнитное поле не проникает в сверхпроводящее тело, а если переход в сверхпроводящее состояние произошел в магнитном поле, то поле «выталкивается» из сверхпроводника.

Физическая природа сверхпроводимости была понята в 1957 на основе теоии (Ландау) сверхтекучести гелия.

Сверхпроводимость это макроскопический эффект. Между электронами металла помимо кулоновского отталкивания, в достаточной степени ослаблено экранирующим действием положительных ионов решетки, в результате электрон-фотонного взаимодействия (взаимодействия электронов с колебаниями решетки) возникает слабое взаимное притяжение и при определенных условиях может преобладать над  отталкиванием. В результате электроны проводимости, притягиваясь, образуют своеобразное связанное состояние, называемое куперовской парой. «Размеры» пары много больше (примерно на четыре порядка) среднего межатомного расстояния, т.е. между электронами, «связанными» в пару, находится много «обычных» электронов.

Чтобы разрушить эту пару (оторвать одни из ее электронов) надо затратить энергию, которая пойдет на преодоление  сил притяжения электронной пары. Такая энергия  может быть в принципе получена в результате взаимодействия с фотонами. Однако пары сопротивляются своему разрушению. Это объясняется тем, что существует не одна пара, а целый ансамбль взаимодействующих друг с другом куперовских пар.

Электроны, входящие в куперовскую пару, имеют противоположные спины., поэтому спин такой пары равен нулю и она представляет собой Бозон.

К бозонам принцип Паули неприменим, и число бозе-частиц, находящихся в одном состоянии, не ограничено.

Поэтому при сверхнизких Т° бозоны скапливаются в основном состоянии, из которого их довольно трудно перевести в возбужденное.

Система бозе-частиц кулоновских пар, обладая устойчивостью относительно возможности отрыва электрона, может действием внешнего электрического поля двигаться без сопротивления со стороны проводника, что и приводит к сверхпроводимости.

Сверхпроводящие кабели. Сигналы электросвязи, распределяющиеся по кабелям связи, сильно ослабляются по амплитуде (затухают), за счет потери энергии в токоведущих проводах и диэлектрике.

Для уменьшения потерь были созданы сверхпроводящие кабели за счет явления сверхпроводимости. При температуре -273°С (если охладить кабель), то его сопротивление будет ничтожно мало, а значит будет минимум потерь. Используют материалы (алюминий, олово, ниобий, свинец, тантал). У меди – сверхпроводимости не наблюдается.

На низких частотах сопротивление мало, но с повышением частоты (до 1 ГГц) сопротивление сверхпроводников возрастает.

По конструкции сверхпроводящие кабели выполняют коаксиальными. Внутренний проводник делают из ниобия, внешний из свинца, а изоляция – из фторопласта. Кабель помещают в трубопровод из нержавеющей стали с теплоизолирующим покрытием. По трубопроводу прокачивают хладоагент – жидкий и газообразный азот, водород или гелий, создающий нужную низкую температуру. Для обеспечения прокачки хладоагента и низкой температуры через каждые 10 – 20 км сверхпроводящего кабеля устанавливаются криогенные станции. Создаются комбинированные кабели для передачи электропередачи и электросвязи.

Достоинства сверхпроводящих кабелей:

- через кабель не проникают электромагнитыне поля, что очень важно с точки зрения защиты линии от внешних помех;

- затухание меньше в 103 раз по сравнению с обычным кабелем начастоте 1 кГц и в 106 раз при 1 МГц и в 104 раз при 1 ГГц, что позволяет организовать связь на большие расстояния без промежуточного усиления.

Недостатки:

- через 10 –20 км необходимо размещать криогенные станции, стоимость их высокая.

Эффект Джозефсона (англичанин ,1963). Предсказал эффект протекания сверхпроводящего тока сквозь тонкий слой диэлектрика (пленка оксида металла толщиной ≈1нм) разделяющий два сверхпроводника (контакт Джозефсона). Если ток через этот контакт не превышает некоторое критическое значение, то падения напряжения на нем нет (стационарный эффект), если превышает – возникает падение напряжения и контакт излучает электромагнитные волны (нестационарный эффект). Частота излучения связанна с U на контакте φ = 2еU/h.

Возникновение излучения объясняется тем, что куперовские пары, проходя сквозь контакт, приобретают относительно основного состояния сверхпроводника избыточную энергию.

Возвращаясь в основное состояние, они излучают квант электромагнитной энергии hφ=2eU.

Эффект используется для точного измерения очень слабых магнитных полей (до 10Тл), токов (до 10А) и напряжений (до 10В), а также для создания быстродействующих элементов логических устройств ЭВМ и усилителей.

3.5 Контактная разность потенциалов, термо - эдс, эффекты.

Если два различных металла привести  в соприкосновение, то между ними возникает разность потенциалов, называемая контактной.

Это обнаружил Вольт (итальянец). Например, если металлы Al, Zn, Sn, Pb, Bi, Hg, Fe, Cu, Ag, Pt, Pd привести в контакт в указанный последовательности, то каждый предыдущий при соприкосновении с одним из последующих заряжается положительно. Это ряд Вольта. Uконт ≈ от десятых долей до целых вольт.

Два закона:

1) Uконт зависит от химического состава и температуры соприкасающихся металлов

2) Uконт последовательно соединенных различных проводников, находящихся под одинаковой Т°, не зависит от химического состава промежуточных проводников и равна Uконт, возникающей при непосредственном соединении крайних проводников.

Механизм возникновения

Соединяют два металла с разной работой выхода А1 и А2, причем А2>А1 (т.е. с различными положениями уровня Ферми, верхнего заполненного электронами энергетического уровня)

Рисунок 3.7 – Образование контактной разности потенциалов

При контакте металлов электроны с более высоких уровней металла 1 будут переходить на более низкие уровни металла 2, поэтому металл 1 заряжается положительно, а металл 2 – отрицательно. Одновременно происходит смещение энергетических уровней: в металле 1 все уровни смещены вниз, а в металле 2 – вверх. Этот процесс будет происходить до тех пор, пока между соприкасающимися металлами не установится равновесие, т.е. произойдет совпадение уровней Ферми (рисунок 3.7 в), но работы выхода не изменятся, а вот потенциальная энергия изменится в точках ВГ (рисунок 3.7 г), т.е. возникает разность потенциалов равная  ∆φ’=(А2-А1)/е , которую называют внешней.

Если уровни Ферми неодинаковые, то между внутренними точками металла возникает внутренняя разность потенциалов ∆φ’’=(ЕF1-EF2)/e, это объясняется различной концентрацией электронов в металлах. ∆φ’’ зависит от Т° контактов металлов. Как правило ∆φ’>>∆φ’’. ∆φ’’ – образуется в контактном слое, толщиной ≈ м.

Эффект Зеебека (1821, немец). Согласно второму закону Вольта, в замкнутой цепи, состоящей из нескольких металлов, с разной Т° в месте контакта, то в цепи возникает электрический ток, называемый термоэлектрическим. Это явление наблюдал Зеебек.

Он создал электрические цепи из металлов Сu-Bi (медь-висмут), Ag-Cu, Au-Cu, при этом контакты имели разную температуру, контакт А имел Т1, контакт В имел Т2, где Т1>T2. Между контактами возникла термоэлектродвижущая сила и стал протекать ток от точки А.

Рисунок 3.8 - Возникновение термо-эдс

Для пары металлов медь-константан, при Т=100К эдс≈4,25 мВ.

Для поддержания постоянного тока необходимо постоянство температур контактов: к более нагретому непрерывно подводить тепло, а от холодного-отводить. Это явление используется в измерении температур (термопарах).

Чувствительность их повышается если термопары соединяются последовательно.

Тепловые преобразователи делятся:

- термоэлектрические (термопары);

- терморезисторы (термометры сопротивления);

- термомеханические;

- монометрические.

Термопара – это разновидность термоэлектрических преобразователей генераторного типа.

Принцип действия основан на возникновении термоэдс на концах двух разнородных материалов, находящихся в разных температурных режимах.

Конструктивно состоит из двух разнородных, специально подобранных проводников, одни концы которых сварены между собой, а другие подсоединены к прибору.

Рабочий (горячий) слой помещают в защитный кожух и устанвливают в месте контроля температуры.

Если Т° свободных холодных слоев термопары отличается от Т° горячего слоя, то вследствии термоэлектрического эффекта на электродах возникает термо-эдс, пропорциальная разности температур.

Термопара ТПП – обладает высокой точностью и стабильностью. Изготавливается из проволоки диаметром 0,3 – 0,5 мм (чистая платина и сплав платины 90% и родия 10%). Работает если T0накала = 100°С, а свободного 0°С, тогда термо-эдс ≈ 0,64 ± 0,03 В.

Для измерения низких температур в диапазоне от 200 до 350°С делают хромедь-алюминевую пару (ТХА), эдс≈40 мкВ/°С

Эффект Пельтье (1834, француз). Он обнаружил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота, т.е. это эффект обратный эффекту Зеебека.

В отличие от джоулевой теплоты, которая пропорциональна квадрату тока, теплота Пельтье пропорциональна первой степени тока и меняет знак при изменении направления тока.

Рисунок 3.9 – Электрическая цепь из двух разнородных материалов

Если создать электрическую цепь из двух разнородных материалов, через которое пропустить ток I (его направление выбрано согласно термотока на рисунке 3.9) при условии Т1>T2, то слой А, который имел большую температуру при эффекте Зеебека, будет охлаждаться, а слой В – нагреваться. При изменении направления I’ слой А будет нагреваться, а слой В – охлаждаться.

Так как электроны по разную сторону слоя обладают разной средней энергией (полной кинетической плюс потенциальной). Если электроны пройдут через слой В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и слой будет нагреваться. В слое А электроны переходят в область с большей энергией, забирая теперь недостающую энергию у кристаллической решетки, и слой будет охлаждаться.  Это явление используется в термоэлектрических холодильниках (созданы в 1954 Иоффе), в электронных приборах.

Эффект Томсона (1856, Кельвин). Исследуя термоэлектрические эффекты, пришел к заключению, что при прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты аналогичной теплоте Пельтье.

Т.е. он подтвердил теорию Томсона и дал практическое объяснение – так как в более нагретой части проводника электроны имеют большую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания Т°, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона.

Обратите внимание на лекцию "8 - Управляющие и регулирующие устройства".

Контрольные вопросы к теме 3:

1 Пояснить зависимость сопротивления металлов от температуры.

2 Дать понятие сверхпроводимости металла и пояснить от чего и как они зависят?

3 Указать виды электронной эмиссии и особенности термоэлектронной эмиссии.

4 Сущность эффекта Джозефсона.

5 Пояснить сущность эффекта Зеебека, Пельтье.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее