Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Физические основы электроники (ФОЭ) » Физические эффекты в твердых и газообразных диэлектриках

Физические эффекты в твердых и газообразных диэлектриках

2021-03-09СтудИзба

ТЕМА 2 физические эффекты в твердых и газообразных диэлектриках

2.1 Поляризация, электропроводность, диэлектрические потери, проницаемость

Диэлектрики – вещества, у которых запрещенная зона настолько велика, что в нормальных условиях электропроводность в них отсутствует.

Подразделяются на электроизоляционные и активные.

Электроизоляционные – применяются для создания электрической изоляции между различными токоведущими частями.

Активные – применяются для усиления, генерации и преобразования сигнала. По агрегатному состоянию подразделяются: жидкие, газообразные и особая группа – твердеющие, которые в исходном состоянии являются жидкостями, но в процессе изготовления изоляции отверждаются и в период эксплуатации представляют собой твердые вещества, например, лаки.

По химической основе подразделяются: органические, неорганические, элементоорганические (промежуточные). Органические содержат углерод.

Поляризация. Это процесс, состоящий в органичном смещении или ориентации связанных зарядов в диэлектрике при воздействии на него внешнего электрического поля, что приводит к образованию в объеме диэлектрика индуцированного электрического момента, равного векторной сумме дипольных электрических моментов молекул.

Интенсивность поляризации определяется поляризованностью (Р), измеряемой Кл/м2. Если электрическое поле однородное, то все молекулы ориентированы параллельно.

Линейные и нелинейные диэлектрики. Линейные – поляризованность пропорциональна напряженности электрического поля. Нелинейные (сегнетоэлектрики) нет прямой пропорциональности.

Виды поляризации: электронная, ионная, дипольно-релаксационная, ионно-релаксационная, самопроизвольная и др.

Рекомендуемые материалы

Электронная поляризация. У рода диэлектриков (H2, N2, O2, CH4) молекулы имеют симметричное строение, т.е. центры «тяжести» положительных и отрицательных зарядов в отсутствии внешнего электрического поля совпадают и, следовательно, дипольный момент молекулы равен нулю. Молекулы таких диэлектриков называют неполярными. Под воздействием электрического поля заряды смещаются в противоположные стороны и молекула приобретает дипольный момент.

Электронная поляризация происходит во всех атомах любого вещества и, следовательно, во всех диэлектриках. Поляризация усиливается за очень короткое время после наложения электрического поля – порядка с, что сравнимо с периодом световых колебаний, т.е. она проявляется во всех частотах, не связана с потерей энергии и не зависит от температуры. При увеличении размеров атома поляризуемость увеличивается, так как при этом не только становится слабее связь электронов внешних оболочек с ядром атома и увеличивается смещение оболочки, но и возрастает заряд ядра.

Ионная поляризация. Она возникает вследствие упругого смещения связанных ионов из положения равновесия на расстояние, меньшее постоянной кристаллической решетки.

Центры положительных и отрицательных зарядов ионов ячейки, совпадающие до приложения электрического поля, под действием поля раздвигаются на некоторое расстояние вследствие чего элементарная ячейка приобретает индуцированный электрический момент. Длительность поляризации больше электронной и составляет с. Ионная проявляется в веществах многовалентных полярных, где ионы слабо связаны друг с другом (NaCl, КСl, КВr).

Дипольно-релаксационная поляризация. Заключается в повороте (ориентации) дипольных молекул в направлении электрического поля.

а)                                                     б)

а) – при отсутствии электрического поля; б) – при воздействии электрического поля

Рисунок 2.1 - Схематическое изображение дипольной поляризации

Из рисунка видно, что при воздействии электрического поля дипольные молекулы, находящиеся в хаотическом тепловом движении, ориентируются в направлении внешнего электрического поля, создавая эффект поляризации диэлектрика. При снятии поля поляризация нарушается беспорядочным тепловым движением молекул, а поляризованность Р спадает по экспоненциальному закону какое-то время называемое временем релаксации. Это промежуток времени, в течение которого поляризованность уменьшается в 2,7 раза от первоначальной. Обычно время составляет с , т.е. она возможна на низких частотах до Гц, при этом возникают потери энергии и процесс зависит от Т°. Данная поляризация свойственна полярным диэлектрикам.

Ионная-релаксационная поляризация. Обусловлена смещением слабо связанных ионов под действием внешнего электрического поля на расстояние, превышающее постоянную кристаллической решетки. Она наблюдается в неорганических кристаллических диэлектриках ионной структуры с неполной упаковкой ионов, процесс происходит с потерей энергии и усиливается с повышением Т°.

Миграционная поляризация. Она наблюдается в некоторых диэлектриках (неоднородных) особенно с полупроводниковыми включениями. Это вид поляризации заключается в перемещении (миграции) зарядов в этих включениях до их границ и накоплении зарядов на границах раздела.

Эти процессы медленные и могут продолжаться секунды и даже часы, и поэтому поляризация возможна на низких частотах.

Самопроизвольная (спонтанная) поляризация. Такая поляризация свойственна сегнетоэлектрикам.

Классификация диэлектриков по виду поляризации:

Неполярные – не содержащие электрических диполей, способных к неориентации во внешнем электрическом поле. Им свойственна электрическая поляризация. К ним относятся: полистирол, полиэтилен, фторопласт-4, бензол, воздух и т.п.

Полярные – содержат электрические диполи, которые способны к переориентации. Наблюдается как электронная, так и дипольно-релаксационная поляризации. Они обладают пониженными электрическими свойствами и применяются в качестве электроизоляционных материалов в области низких частот. К ним относятся: органическое стекло, фторопласт –3, лавсан и др.

Диэлектрики с ионной структурой. К ним относятся твердые неорганические диэлектрики с выше перечисленными поляризациями и делятся по потерям на 2 группы:

1) кварц, слюда, корунд, рутил и др., с электронной и ионной видами поляризаций;

2) стекло, керамика, микалекс и др., с электронной, ионной и релаксационной поляризацией;

3) сегнетоэлектрики - диэлектрики, обладающие  спонтанной поляризацией – титанит бария, стронция, сегнетовая соль.

2.2 Электропроводность диэлектриков, диэлектрические потери, диэлектрическая проницаемость, электрическая прочность, виды пробоя в диэлектриках

За счет поляризации диэлектрика происходит уменьшение в нем поля по сравнению с первоначальным значением  внешнего поля, так как часть линий напряженности пройдет сквозь диэлектрик, а другая – оборвется на связанных зарядах диэлектрика.

Поэтому напряженность внутри диэлектрика равная , где  - это диэлектрическая проницаемость среды (диэлектрика) и показывает, во сколько раз диэлектрик ослабляет действие внешнего электрического поля и характеризует поляризованность диэлектрика. Значение  может принимать различные значения от нескольких единиц до десятков тысяч.

Значение  зависит от температуры частоты и виды поляризации, частоты, давлении, влажности.

Электропроводность. В твердых диэлектриках представляет собой сумму токов:

,

где - ток смещения, обусловлен электронной и ионной поляризации, он                      проходит в очень малые промежутки времени (с);

       - ток абсорбции, обусловлен перераспределением свободных зарядов в объеме диэлектрика. Часть носителей встречает на своем пути ловушки захвата – дефекты решетки, захватывающие и удерживающие носители. Со временем, когда все ловушки заполняются, ток абсорбции прекращается;

       - сквозной ток, обусловленный объемным сопротивлением диэлектрика и поверхностным, так как в любом диэлектрике имеется небольшое количество свободных электронов, за счет примеси.

Диэлектрические потери. Понимают электрическую мощность поглощаемую диэлектриком при воздействии на него электрического поля. Она рассеивается в диэлектрике, превращаясь в тепло. Они в основном обусловлены сквозным током. При высоких напряжениях и частоты потери могут возникать за счет ионизации газов внутри диэлектрика.

Потери возникают как на постоянном так и на переменном.

Для расчета потерь используют соотношение , где  - угол диэлектрических потерь, который определяет соотношение между резистивной и реактивной составляющими тока. Чем меньше , тем лучше диэлектрик. ≈ 0,0001 – 0,01.

Пробой диэлектриков. Явление образования в диэлектрике проводящего канала под действием электрического поля называется пробоем. Различают два вида пробоя: полный и неполный.

Полный – если проводящий канал проходит от одного электрода к другому и замыкает их.

Частичный (неполный), если пробивается лишь газовое или жидкое включение твердого диэлектрика.

Поверхностный пробой – который возможен в твердых диэлектриках.

Пробивное напряжение диэлектрика зависит от толщины диэлектрика.

,

где - электрическая прочность;

       h – толщина диэлектрика.

Значение  зависит от формы электродов, времени прохождения под напряжением, вида напряжения, частоты, температуры, влажности.

Физические процессы пробоя в разных случаях различны. Различают несколько механизмов пробоя: электрический, тепловой, электрохимический, ионизационный, электромеханический.

Электрический пробой – обусловлен ударной ионизацией или разрывом связей между частицами диэлектрика непосредственно под действием электрического поля. Электрический пробой обусловлен внутренним строением  диэлектрика (плотностью упаковки атомов, прочностью и связей) и слабо зависит от внешних факторов (температуры, формы образца его размеров, частоты напряжения). Длится процесс микросекунды и менее, а  в пределах 100 – 1000 МВ/м.

Тепловой пробой. Обусловлен нарушением теплового равновесия диэлектрика вследствие диэлектрических потерь. Мощность, выделяющаяся в образце равна:

Рn = U2ωC

Тепловая мощность, отводимая от образца, пропорциональна площади теплоотвода S и разности температур Т и окружающей среды То.

Рр = кS(T-T°),

где к – коэффициент теплоотдачи.

Условие теплового равновесия является Рn = Рр, но так как  обычно растет с повышением температуры, то, начиная с некоторой критической Ткр, значение Рn > Рр В результате превышения тепловыделения над теплоотдачей диэлектрик лавинообразно разогревается, что приводит к разрушению.

Напряжение теплового пробоя отличается от напряжения электрического пробоя и зависит от частоты.

где А – постоянная.

С повышением f   Uпр уменьшается, аналогично и от изменения температуры, за счет роста .

По указаннным причинам изменяется механизм пробоя: при низких f или Т, когда Uпр.тепл велико, происходит электрический пробой, а при высоких f или Т, Uпр.тепл. Снижается до значений, меньших значений Uпр.электр, пробой становится тепловым. Отмечается  fкр и Ткр происходит этот переход от электрического к тепловому и зависят от диэлектрика, условий теплоотвода, времени приложения U, скважности импульсов.

Электрохимический пробой. Обусловлен химическими процессами, приводящими к изменениям в диэлектрике под действием электрического поля, так как приводит к «старению», и определяется временем жизни изоляции.

Ионизационный пробой. Он обусловлен ионизационными процессами вследствие частичных разрядов в диэлектрике. Особенно это характерно для диэлектриков с воздушными включениями (бумага).

При больших Е и воздушных порах возникает ионизация воздуха, образуется озони, ускоряются ионы, что приводит к выделению тепла, что снижает Епр. При этом возможен и поверхностный пробой. Чтобы его не допустить необходимо: удлинять возможный путь разряда по поверхности. Для этого поверхность изоляторов делают гофрированной, в конденсаторах оставляют неметаллизированные закраины диэлектрика, поверхности покрывают лаками, компаундами, жидкими диэлектриками с высокой Епр.

Пробой неоднородных микроскопических диэлектриков. Большинство диэлектриков состоят из нескольких слоев обладающих разными электрическими свойствами и имеют больше или меньше количество пор. Например: намоточные изделия, керамические диэлектрика (керамика и стекло).

Если приложить к такому диэлектрику U, то напряженность в отдельных слоях будет отличаться от среднего значения Еср = U (h1 + h2). Поэтому, если произойдет пробой одного слоя, то это вызовет пробой всего образца.

Чем меньше размер пор в диэлектрике, тем более высокое U нужно приложить к образцу, чтобы вызвать разряды в порах. Для этого пористые диэлектрики заполняют жидким или твердеющим электроизоляционным материалом. У кабельной бумаги Епр = 3-5 МВ/м, для пропитанной компаундом Епр = 40 – 80 МВ/м.

2.3 Сегнетодиэлектрики

Сегнетодиэлектриком называют диэлектрик, обладающий спонтанной поляризацией, направление которой может быть изменено внешними воздействиями, например, электрическим полем.

Особенности сегнетодиэлектриков:

1 Обладают доменной структурой. Домен – это макроскопическая область, имеющая пространственно – однородное упорядочение дипольных моментов элементарных кристаллических ячеек. В отсутствие внешнего электрического поля дипольные моменты в доменах ориентированы равновероятно по всем направлениям, что вызывает их взаимную компенсацию.

При воздействии электрического поля дипольные моменты доменов ориентируются преимущественно в направлении поля, что вызывает эффект очень сильной поляризации, а следовательно, высокое и сверхвысокое значение диэлектрической проницаемости.

2 Сильная зависимость Е от температуры (с максимумом при Т°, называемой сегнетоэлектрической точкой Кюри) и сверхвысокое значение диэлектрической проницаемости.

3 Поляризация связана с достаточно большими затратами энергии. В переменном поле имеет место гистерезис.

4 Сильная зависимость Е и диэлектрических потерь от частоты, особенно на СВЧ.

Спонтанная (самопроизвольная) поляризация возникает под влиянием внутренних процессов, без внешних воздействий. Зависимость поляризованности от Е нелинейная и при циклическом изменении Е вид кривой является петля гистерезиса. По значению коэрцитивной силы подразделяются на сегнетомягкие и сегнетотвердые.

Важный параметр – сегнетоэлектрическая точка Кюри – температура, при которой возникает (при охлаждении) или возникает (при нагреве) спонтанная поляризация. При достижении точки Кюри происходит фазовый переход из сегнетоэлектрического состояния в параэлектрическое, когда Рs = 0. При этом изменяется симметрия кристалла, параметры элементарной ячейки, а диэлектрические, упругие, пьезоэлектрические, электрооптические  характеристики имеют резкие максимумы.

В сегнетодиэлектриках с фазовым переходом первого рода спонтанная поляризация в точке Кюри изменяется скачком, что характеризуется наличием температурного гистерезиса и выделение скрытой теплоты. В сегнетоэлектриках с размытым переходом, в которых нет определенной точки перехода, наблюдается широкая область температур, где Рs постоянно уменьшается. В этой области существуют обе фазы- сегнето- и параэлектрическая.

По виду поляризации подразделяются на ионные и дипольные. Ионные – представляют собой кристаллы со значительной степенью ионной связи. Наблюдается спонтанная поляризация.

Дипольные – в них существуют постоянные электрические диполи или дипольные группы.

Параметры сегнетодиэлектриков меняются в широких пределах от -273°С до +1200°С, а Е изменяется от единиц до десятков тысяч.

Применение:

- Конденсаторная сегнетокерамика – для изготовления конденсаторов (низкочастотных) большой емкости (титанат бария ВаТiО3).

- Нелинейная сегнетокерамика – специальный конденсатор – вариконд, емкость которого зависит от напряжения. Используются: в вычислительной технике (запоминающее устройство), бесконтактных переключателях, преобразователях частоты, усилителях, стабилизаторах.

- Терморезистивная  - (относится к полупроводникам) отличается позисторным эффектом, в резком возрастании проводимости при повышении температуры. Этот эффект наблюдается в определенном интервале температур.  Изготовляют терморезисторы позисторы (стабилизаторах тока, термостатах, регулировки температур и измерения и т.д.).

2.4 Пьезоэлектрики

Это твердые, сенизотропные кристаллические вещества, поляризующиеся под действием механических напряжений. В них возникают прямой и обратный пьезоэффекты.

Прямой пьезоэлектрический эффект – образование электростатических зарядов на поверхности диэлектрика и электрической поляризации внутри его, происходящие в результате воздействия механических напряжений.

Поляризация P=dσ [Кл/м2],

где d – коэффициент пропорциональности, называемый пьезоэлектрическим       модулем или пьезомодулем.[Кл/Н];

σ – механическое напряжение [Н/м2].

Рисунок 2.2 – Прямой пьезоэффект

Под воздействием механического напряжения работа внешней силы затрачивается на деформацию материала и его поляризацию (эффект был открыт в 1880 г.), на поверхности кристалла появляются электрические заряды, такие материалы называют пьезоэлектрическими.

Применение: преемники ультразвука, датчики деформации, звукосниматели.

Обратный пьезоэффект. Под воздействием внешнего источника с напряжением U затрачивается энергия на заряд ёмкости пьезоэлемента (CU2/2) и на его деформацию. При этом амплитуда механических колебаний будет меняться с частотой переменного электрического тока; при совпадении частоты поля с собственной частотой пьезоэлектрика амплитуда приобретает максимальные значения.

Используется для преобразования электрических сигналов в механические (акустические излучатели, генераторы ультразвука).

Пироэлектрики. Пироэлектрическим эффектом называют явление поляризации диэлектрика при однородном по его объёму нагреве или охлаждении.

Рисунок 2.3 – Пироэлектрический эффект

При изменении температуры пироэлектрик поляризуется, т.е. на противоположных сторонах его возникают разноимённые заряды. Это возможно в веществах, обладающих спонтанной или остаточной поляризацией, когда имеющаяся поляризованность зависит от Т0. Благодаря электропроводности связанные поляризационные заряды обычно скомпенсированы свободными зарядами противоположного знака, они обведены кружками, и наличие поляризации не проявляется. При нагреве или охлаждении значение Р изменяется (исчезновение Р изображено исчезновением нескольких диполей) и часто свободных зарядов освобождается. Эти освободившиеся свободные заряды и обнаруживаются внешним индикатором как пироэлектрическая поляризация, являющаяся функцией температуры.

Пироэлектрики обладают и обратным электроколорическим эффектом, т.е., их температура изменяется при поляризации. Применяются в детекторах оптических сигналов и в тепловых датчиках, а также делают решётки для приёма изображения.

Материалы – турмалин, сульфат лития, виннокислый калий.

Пироэффектом обладают и сегнетоэлектрики: LiNbO3 и LiTaO3.

2.5 Активные диэлектрики

Называются диэлектрики, предназначенные для генерации, усиления, модуляции и преобразования электрических сигналов.

В обычных пассивных диэлектриках применяют электроизоляционные материалы, и используется явление поляризация, индуцируемая внешним полем.

В активных диэлектриках используется широкий круг свойств и взаимодействие (см. рисунок 2.4).Прямые взаимодействия между «внешними» свойствами диэлектрика (механическое напряжение τ, напряженности Е и Н, температуры) и его «внутренними» свойствами (поляризации Р, плотности тока, намагниченность, деформация, энтропия).

Важную роль играют связи между различными группами свойств – это пьезоэлектрические, пироэлектрические, сегнетомагнитные, магнитострикционные и др.

В активных часто используют нелинейность связей между поляризацией и Е, или другими величинами. Иногда важнейшими свойствами оказываются спонтанная поляризация, возникающая, при Е = 0 (сегнетоэлектрики), спонтанная деформация (сегнетоэластики), спонтанная намагниченность (ферромагнетики).

Широко используются в технике различные перекрестные взаимодействия, показанные на рисунке 2.4 пунктирными линиями. Так, управление величиной ε с помощью температуры, давления или магнитного поля может служить основой для создания датчиков соответствующих параметров.

Рисунок 2.4 – Виды взаимодействий в активных диэлектриках

Воздействие электрического поля на упругие константы применяют в электрически управляемых фильтрах и линиях задержки, в параметрических усилителях акустических сигналов. Если в обычных диэлектриках наличие активной составляющей тока нежелательно, то в некоторых активных диэлектриках используется именно переход («переключение») из непроводящего состояния в проводящее и обратно (позисторы, варисторы, полупроводниковые стекла). В сегнетоэлектриках-полупроводниках удельное сопротивление ρ зависит от поляризованности Р, а в пьезополупроводниках - от деформации х, что может служить основой для создания новых приборов радиоэлектроники (запоминающие устройства, акустические усилители).

Рассмотрение активных диэлектриков начнем с сегнетоэлектриков, у которых указанные на рисунке 2.4 взаимодействия выражены наиболее сильно.

Вывод. При отсутствии внешнего поля сегентодиэлектрики представляет собой как бы мозаику из доменов – областей с различными направлениями поляризованности.

Рисунок 2.5 – Титанат бария, где знаки ,  и стрелки указывают направление вектора Р

Так как в смежных доменах направления различны, то в целом дипольный момент равен нулю. При внешнем электрическом поле происходит переориентация дипольных моментов доменов по полю, а возникающее при этом суммарное электрическое поле доменов будет поддерживать их некоторую ориентацию и после прекращения действия внешнего электрического поля.

Электрические свойства сильно зависят от t0. Для каждого сегмента определенная температура выше которой его необычные свойства исчезают. Это температура называется точкой Кюри. Как правило, они имеют одну точку, исключение составляют: сегнетовая соль и аморфные с нею соединения. Превращение в обычный диэлектрик происходит в точке Кюри, сопровождающий фазовым переходом второго рода (скачкообразным изменением теплоемкости).

В сегнетоэлектриках наблюдается явление диэлектрического гистерезиса (запаздывания). С увеличением Е растет Р, достигая насыщения. С уменьшением Е уменьшает Р, но по другой кривой, и при Е=0 сохраняется остаточная поляризованность Р0, т.е. он остается поляризованным при Е=0.

Широко применяют в:

1) электретах – сохраняющие достаточно длительное время поляризованность после Е = 0 (это аналог постоянного магнита);

2) варикапах;

3) позисторах;

4) в запоминающих устройствах;

5) генераторах и приемников СВЧ.

2.6 Электропроводность газообразных диэлектриков

К ним относятся: воздух, азот, кислород, водород, элегаз (SFu), метан, аргон, неон, и др.

Достоинства изоляции:

-высокое удельное сопротивление;

-близкую к единице (малую) диэлектрическую проницаемость;

-малый тангенс угла потерь.

Недостаток – низкая электрическая прочность, которая зависит от: давления, температуры, формы электродов, расстояния между ними, материала электродов, приложенного U,плотности газа, рода газа.

Газ при обычных условиях состоит из нейтральных атомов и молекул и не содержит свободных электронов и ионов.

Газ становится проводником электричества, когда некоторая часть его молекул ионизируется, т.е. произойдет расщепление нейтральных атомов и молекул на ионы и электроны. Под воздействием какого-либо ионизатора происходит вырывание из атома или молекулы одного или нескольких электронов, что приводит к образованию свободных электронов и положительных ионов.

Электроны могут присоединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы.

Следовательно, в ионизированном газе имеются положительные и отрицательные ионы и свободные электроны.

Ионизирующие факторы: сильный нагрев, короткие электромагнитные излучения (ультрафиолетовое, рентгеновское и гамма-излучение), корпускулярное излучение (потоки электронов, протонов, альфа-частиц).

Для того, чтобы выбить электрон, необходимо затратить энергию, равную энергии ионизации = 4-25эВ.

Одновременно с процессом ионизации газа идет обратный процесс – рекомбинации.

Рисунок 2.6 – Зависимость тока от напряжения

На участке ОА ток возрастает пропорционально напряжению. На участке АВ рост тока замедляется и затем прекращается (участок ВС).

Это происходит в том случае, когда ионы и электроны, создаваемые внешним ионизатором за единицу времени, за это же время достигают электродов. Получается ток насыщения. Если прекратится действие ионизатора, то ток исчезнет.

На участке CD ток начинает увеличиваться с увеличением U, а затем резко возрастает из-за ударной ионизации.

При больших Uпробоя сильно ускоренные электроны, сталкиваясь с нейтральными молекулами, ионизируют их, образуются вторичные электроны и положительные ионы которые движутся: ионы к катоду, а электроны – к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество носителей возрастает лавинообразно – это ударная ионизация.

Но этого не достаточно для поддержания разряда при удалении внешнего (DE) фактора. Необходимо для поддержания лавины «воспроизводить» электроны. Для этого необходимо:

-чтобы ускоренные положительные ионы ударяясь о катод, выбивали бы из него электроны;

-положительные ионы, сталкиваясь с молекулами газа, переводили бы их в возбужденное состояние, а переход сопровождался испусканием фотона;

-фотон, поглощается нейтральной молекулой, ионизирует ее, т.е. происходит процесс фотонной ионизации молекул;

-электроны, ударяясь о анод, должны выбивать электроны;

-при повышении U наступает момент, когда положительные ионы приобретают энергию, достаточную для ионизации молекул газа и к катоду устремляются ионные лавины. Происходит увеличение тока почти без увеличения U, наступает самостоятельный разряд, а напряжение в этот момент называется напряжением пробоя.

4 вида самостоятельного разряда:

Тлеющий разряд возникает при низких давлениях. Применяется: в газосветных лампах, лампах дневного света, для катодного напыления металлов. Катод, сильно нагреваясь, за счет попадания положительных ионов, переходит в парообразное состояние. Помещая вблизи катода различные предметы, их покрывают равномерным слоем металла.

Искровой разряд возникает при больших напряженностях электрического поля ~ 3*106 В/м в газе и давлении ~ атмосферному.

Используется: в двигателях внутреннего сгорания для воспламенения горючей смеси, искровых разрядников, для электроискровой точной обработки металлов (резанья, сверления), в спектральном анализе для регистрации заряженных частиц.

Дуговой разряд. Применяется: для сварки и резки металлов, получения высококачественных сталей, освещения, в выпрямителях.

Коронный разряд возникает вблизи острия при Е=30кВ/см, появляется свечение, имеющее вид короны.

Различают отрицательную и положительную короны, создают радиопомехи.

Применяют: в электрофильтрах для очистки промышленных газов от примесей, для нанесения порошковых и лакокрасочных покрытий.

Закон Пашека. Пробивное напряжение воздуха и других газов в электрическом поле является функцией произведения давления газа на расстояние между электродами:

Uпр=f (ph)

1 – воздух; 2 – азот; 3 – неон; 4 – элегаз

Рисунок 2.7 – Кривые Пашика для газов

С увеличением давления электрическая прочность газов увеличивается. При больших давлениях длина свободного пробега электронов мала, так как повышается концентрация молекул газа. Вследствие этого кинетическая энергия электронов недостаточна для ионизации молекул.

Возрастание электронной прочности ниже атмосферного, объясняется уменьшением числа молекул газа в единице объема и энергии электрона не хватает для ионизации.

Плазма и ее свойства. Плазмой называется сильно ионизированный газ, в котором концентрация положительных и отрицательных зарядов практически одинакова.

Плазму различают:

- высокотемпературную – возникает при высоких температурах;

- газоразрядную – возникающую в газе.

Свойства плазмы:

-высокой степенью ионизацией;

-большой электропроводностью и в основном ток создается электронами (наиболее подвижными частицами);

-свечением;

-сильным взаимодействием с электрическим и магнитным полями;

-колебаниями электронов в плазме с частотой ~ 108Гц, вызывающими общее вибрационное состояние плазмы.

Эти свойства позволяют считать плазму как четвертое состояние вещества.

Применение. Низкотемпературная (<105К) применяется в газовых лазерах, термоэлектронных преобразователях и магнитогидродинамических генераторах (тепло в эл. энергии), в плазменных ракетных двигателях, для резки и сварки металла.

2.7 Электролюминесценция, катодолюминесценция

Электролюминесценция – это излучения света под действием электрического поля или протекающего тока. При воздействии электрического поля на полупроводник (называемый люминофором) возникает ударная ионизация атомов электронами, за счет электрического поля, а также эмиссия электронов из центра захвата. Вследствие этого концентрация свободных носителей превысит равновесную и полупроводник окажется в возбужденном состоянии, т.е. в состоянии при котором его внутренняя энергия превышает равновесную при данной температуре.

Устройство электролюминесцентного излучателя (конденсатора): на металлическое основание напыляется тонкий слой (до 20 мкм) полупроводника (сульфида цинка), поверх него наносится тончайший, прозрачный для видимого света, слой металла. При подключении к металлическим слоям источника (постоянного или переменного) возникает зеленовато-голубое свечение, яркость которого пропорциональна значению U источника. Если в состав люминофора входит селенид цинка, то можно получить белое, желтое или оранжевое свечение.

Недостатки:

- низкое быстродействие;

- нестабильный параметр;

- невысокая яркость свечения;

- малый ресурс.

Электролюминесценция наблюдается и в полупроводниковых диодах, при протекании через диод тока, при прямом включении. При этом электроны переходят из n-области в p-область и там рекомбинируют с дырками. В зависимости от ширины запрещенной зоны фотоны имеют частоты в видимой или невидимой человеком части светового спектра, сделанных из кремния, излучают невидимый инфракрасный свет.

Для светодиодов используется материалы с шириной запрещенной зоны от 1,6 эВ до 3,1 эВ (это красный и фиолетовый цвет), а поэтому широко используется для создания цифровых индикаторов, оптронов, лазеров.

Преимущество:

- технологичность;

- высокое быстродействие;

- большой срок службы;

- надежность;

- микро миниатюрность;

- высокая монохроматичность излучения.

По конструкции светодиоды различают: инжекционные, полупроводниковые лазеры, суперлюминесцентные (занимающие промежуточные значения и применяют в ВОЛС), с управляемым цветом свечения.

ЗСИ – знакосинтезирующие индикаторы, – в которых изображение получают с помощью мозаики на независимо управляемых преобразователях «электрический сигнал-свет».

В ЗСИ используется свечение, возникающее в люминофорах помещенных в сильное электрическое поле. Конструктивно они представляют собой группу конденсаторов, у которых одна из обкладок выполнена прозрачной, а другая не прозрачной.

При подключении источника к обкладкам люминофор начинает светиться.

Если прозрачный электрод сделать той или иной формы, то зона свечения повторит форму. Цвет сечения зависит от состава люминофора. Используются в дисплеях.

Яркость свечения зависит от значения U и частоты: U=160-250В, f=300-4000Гц.

Потребляемая мощность сотые-десятые доли ватт, яркость 20-65кд/м2.

Катодолюминесценция. При удалении из колбы газа (при давлении ≈ 1,3 Па) свечение газа ослабевают и начинают светиться стенки колбы. Почему? Электроны, выбиваемые из катода положительными ионами, при таком разряжении редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударяясь о стекло, вызывает его свечение, так называемую катодолюминесценцию, а поток электронов, получил название катодных лучей.

Низковольтная вакуумная люминесценция. По механизму действия не отличается то высоковольтной и носит рекомендательный характер.

Сущность – люминофор бомбардируется электронами, которые возбуждают люминофор и приводят к нарушению термодинамического равновесия. Появляются электроны, энергия которых больше энергии для зоны проводимости, и дырки, имеющие энергию, меньшую потолка валентной зоны. В связи с неустойчивостью неравновесного состояния начинается процесс рекомбинации с излучением фотонов катодами, что сопровождается излучением.

Если рекомбинация будет осуществляться через ловушку, то через некоторое время носители могут вернуться на свои места, что увеличивает послесвечение.

Низковольтная люминесценция характеризуется:

- типом люминофора;

- глубиной проникновения в кристалле бомбардирующих электронов;

- используется низковольтное напряжение (единицы-десятки вольт);

- используются в вакуумных ЗСИ;

- напряжение накала = 5В;

- Uа = (20-70)В;

- Ток анода сегмент (1-3)мА.

Преимущества вакуумных ЗСИ:

- высокая яркость свечения;

- многоцветность;

- минимум потребления энергии;

- большое быстродействие.

Недостатки: необходимо иметь три источника питания, хрупкость конструкции.

Контрольные вопросы к теме 2:

1 Понятие поляризации.

2 Виды поляризации.

Люди также интересуются этой лекцией: Крашение текстильных материалов.

3 Чем определяется электропроводность диэлектрика?

4 Указать виды электрического пробоя.

5 Указать особенности сегнетоэлектриков.

6 Пьезоэффект и его применение.

7 Указать виды газового разряд и их особенности.

8 Особенности электролюминесценции и катодолюминесценции.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее