Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке

Весовые функции

2021-03-09СтудИзба

Тема 3: весовые функции.

Свобода и ограничение есть два аспекта необходимости.

 Антуан де Сент-Экзюпери.(Писатель и летчик Франции, ХХ в.)

Берешь топор, обрубаешь себе палец, и начинаешь вибрировать. Берешь сигнал, обрубаешь ему хвост, он тоже начинает вибрировать. А весовая функция, это обезболивающий укол. Вибрацию снимает, но палец не восстанавливает.

Валерий Самойлин.(Геофизик и альпинист России, ХХ в.)

Содержание: 3.1. Явление Гиббса. Параметры эффекта. Последствия для практики. 3.2. Весовые функции. Нейтрализация явления Гиббса. Весовые функции. Литература.

3.1. Явление Гиббса /л24/.

Большинство методов анализа и обработки данных представляют собой или имеют в своем составе операцию свертки множества данных s(k) с функцией оператора свертки h(n). Как множество данных s(k), так и оператор h(n), выполняющий определенную задачу обработки данных и реализующий определенную частотную передаточную функцию системы (фильтра), могут быть бесконечно большими. Практика цифровой обработки может иметь дело только с ограниченными множествами данных (k = 0,1,2,…,K) и коэффициентов оператора (n = 0,1,2,…,N или n = -N,…,1,0,1,…,N  для двусторонних операторов). В общем случае, эти ограниченные множества "вырезаются" из бесконечных множеств s(k) и h(n), что может весьма существенно сказаться на характеристиках функций.

Чаще всего с изменением частотных характеристик функций приходится сталкиваться при усечении операторов фильтров. На примере усечения симметричных операторов и рассмотрим характер происходящих изменений.

Рекомендуемые материалы

При расчетах фильтров, как правило, задается определенная передаточная характеристика H(w) фильтра и по ней производится расчет оператора фильтра h(n), количество членов которого может оказаться очень большим даже только по значимым значениям. Усечение может рассматриваться, как результат умножения функции оператора фильтра на селектирующее окно длиной 2N+1. В простейшем случае это окно представляет собой П-образную селектирующую функцию, которую называют также естественным временным окном:

                                      hn = h(n)·ПN(n),    ПN(n) = 1 при |n| £ N,

                                                                  ПN(n) = 0 при |n| > N.

Функция h(n) оператора фильтра, в пределе бесконечная, обуславливает определенную частотную передаточную характеристику фильтра H(w). Полному оператору h(n) соответствует исходная частотная характеристика H(w):

                                      H(w) =h(n) exp(-jwn).                          (3.1.1)

Сущность явления Гиббса. Функции во временном окне селекции ПN(n) в частотном пространстве соответствует спектральная функция, которая в определенной степени должна отличаться от функции H(w). Очевидно, что при усечении оператора h(n), а значит и ряда Фурье (3.1.1), до конечного числа членов N мы будем иметь усеченный ряд Фурье:

                                      HN(w) =h(n) exp(-jwn),                           (3.1.2)

при этом сходимость суммы остающихся членов ряда HN(w) к исходной передаточной функции H(w) ухудшается и происходит отклонение частотной характеристики фильтра от первоначальной в тем большей степени, чем меньше значение N.  Особенно ярко это проявляется на крутых перепадах (разрывах, скачках) в передаточных функциях:

- крутизна перепадов "размывается", т.к. она не может быть больше, чем крутизна  (в нулевой точке) последней сохраненной гармоники ряда (3.1.2);

- по обе стороны "размытых" перепадов появляются выбросы и затухающие осцилляции с частотой, равной частоте последнего сохраненного или первого отброшенного члена ряда (3.1.1).

Эти эффекты при усечении рядов Фурье получили название явления Гиббса. Рассмотрим явление Гиббса более подробно на примере разложения в ряд Фурье частотной функции единичного скачка G(w), которая является Фурье-образом какой-то дискретной временной функции bn. Уравнение функции единичного скачка:

                                       G(w) = -0.5 при -p £ w < 0,                          (3.1.3)

                                               = 0.5 при  0 £ w £ p.

Функция (3.1.3) имеет разрыв величиной 1 в точке w = 0 и, в силу дискретности временной функции и периодичности ее спектра, в точках p, 2p и т.д. Поскольку функция G(w) является нечетной, ее ряд Фурье не содержит косинусных членов и коэффициенты ряда определяются выражением:

bn = G(w) sin(nw) dw = sin(nw) dw.

                                      bn = 2/(n·p), n- нечетное,

                                      bn = 0,          n- четное.

Описание: D03-01

Рис. 3.1.1. Значения коэффициентов bn.

         Как видно на рис. 3.1.1, ряд коэффициентов bn затухает очень медленно. Соответственно, медленно будет затухать и ряд Фурье функции G(w):

G(w) = (2/p)[sin w+ (1/3)·sin 3w+ (1/5)·sin 5w+....].

                                      G(w) = sin[(2n+1)w]/(2n+1).                        (3.1.4)

Рис. 3.1.2. Явление Гиббса.

Если мы будем ограничивать количество коэффициентов bn, т.е. ограничивать значение N ряда Фурье функции G(w), то суммирование в (3.1.4) будет осуществляться не до ∞, а до значения N. Графики частичных сумм ряда (3.1.4) в сопоставлении с исходной функцией приведены на рис. 3.1.2. Они наглядно показывают сущность явления Гиббса.

При усечении рядов Фурье определенное искажение функции, разложенной в ряд Фурье, существует всегда. Но при малой доле энергии  отсекаемой части сигнала этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Параметры эффекта. Ряд (3.1.4) при усечении можно записать в следующем виде:

GN(w) = [cos(2n+1)w dw] = [cos(2n+1)w] dw.

Сумма косинусного ряда равна sin[2(N+1)w]/(2sin w). Отсюда:

                                      GN(w) = .                                  (3.1.5)

Для определения местоположения максимумов и минимумов осцилляций функции (3.1.5) приравняем к нулю ее первую производную (подинтегральную функцию), при этом:

wk = ±kp/(2(N+1)),  k = 1,2,...

Соответственно, амплитудные значения первых (максимальных) осцилляций функции приходится на точки wk=1 = ±p/(2(N+1)), вторых (противоположных по полярности) - на точки wk=2 = ±p/(N+1). Период пульсаций равен 2wk=1 = p/(N+1) = Dw, т.е. интервалу дискретизации спектра при равном количестве отсчетов оператора фильтра и его спектра. Функция пульсаций (при ее выделении) является нечетной относительно скачка. Соответственно, при скачке функции G(w) на произвольной частоте главного частотного диапазона значения wk являются значениями Dwk относительно частоты скачка. Амплитудные значения функции в точках w1 и w2 (при подстановках w1 и w2 верхним пределом в (3.1.5)) практически не зависят от количества членов ряда N и равны:

GN(w1) » 0.5+0.09,       GN(w2) » 0.5-0.05.

Амплитуда последующих осцилляций постепенно затухает.

Таким образом, для усеченных рядов Фурье предельные значения максимальных выбросов по обе стороны от скачка и следующих за ними обратных выбросов при единичной амплитуде разрыва функции достигают соответственно 9% и 5% значения амплитуды скачка. Кроме того, сам скачок функции из собственно скачка преобразуется в переходную зону, длина которой между точками максимальных выбросов по обе стороны скачка равна p/(N+1), а по уровню исходных значений функции на скачке (в данном случае от -0.5 до 0.5) порядка (2/3)p/(N+1). Это явление типично для всех функций с разрывом.

Можно рассмотреть это явление и с других позиций. Как известно, произведение функций отображается в частотном представлении сверткой их фурье-образов. Отсюда:

                                 hn = h(n)·ПN(n) ó H(w) * ПN(w) = HN(w).             (3.1.6)

Рис. 3.1.3. Свертывающие весовые функции.

Правая часть выражения (3.1.6) и отражает математическую сущность явления Гиббса. Ограничение массива функции определенным количеством членов (умножением на П-окно, прямоугольную селектирующую функцию) отображается сверткой частотной характеристики функции с частотной характеристикой селектирующей функции (которую часто называют свертывающей функцией). Частотная характеристика прямоугольной функции хорошо известна, как функция отсчетов sinc(x)/x, x = w(2N+1)/2, и для П-импульса длиной 2N+1 приведена на рис. 3.1.3 (для ряда значений N). Чем больше N, тем уже центральный пик функции и, соответственно, будет меньше  ширина переходной зоны, которая формируется на разрыве вместо скачка функции. Амплитуда самих осцилляций (по номеру от центрального пика) остается без изменений. Свертка этой частотной функции (Фурье-образа селектирующей функции) с частотной характеристикой усекаемых функций и порождает явление Гиббса на резких скачках частотных характеристик.

Последствия для практики. При расчетах фильтров и усечении размеров их операторов явление Гиббса является весьма нежелательным, т.к. приводит к искажению формы передаточных характеристик фильтров. В качестве примера рассмотрим явление Гиббса применительно к фильтру низких частот.

Попытаемся реализовать передаточную функцию фильтра следующего вида:

                                                 H(f) = 1,   при -0.2 £ f £ 0.2,

                                                                       = 0,   при -0.2 > f > 0.2,

в главном частотном диапазоне от -0.5 до 0.5. Функция четная, коэффициенты ряда Фурье представлены только косинусными членами:

an = 4cos(2pfn) df = 2 sin(0.4pn)/(pn).

Передаточная функция:

                              H(f) = 0.4 + 2sin(0.4pn) cos(2pfn)/(pn).                            (3.1.7)

Результат усечения ряда Фурье (3.1.7) до N = 7 приведен на рис. 3.1.4.

Рис. 3.1.4. Передаточные функции ФНЧ

Как видно на рисунке, явление Гиббса существенно искажает передаточную функцию фильтра. Однако при реализации фильтров ограничение длины операторов фильтров является правилом их конструирования исходя из чисто практических соображений реализации.

Явление Гиббса имеет место при усечении любых числовых массивов. При обработке геофизических данных операция усечения числовых массивов, как одномерных, так и многомерных, относится к числу распространенных. Усекаются корреляционные функции, и соответственно свертываются с частотным образом весового окна вычисляемые спектры мощности. Вырезаются из профилей и площадей участки съемки с аномальными данными для их более детальной обработки и интерпретации, и т.п. Во всех этих случаях мы можем столкнуться как с явлением Гиббса, так и с другими последствиями свертки функций в частотной области, в частности с цикличностью свертки, с определенным сглаживанием спектров усекаемых данных, которое может быть и нежелательным (снижение разрешающей способности), и полезным (повышение устойчивости спектров). В самих усекаемых данных мы не видим этих явлений, т.к. они проявляется в изменении их частотного образа, но при обработке данных, основной целью которой, как правило, и является изменение частотных соотношений в сигналах, последствия этих явлений могут сказаться самым неожиданным образом.

На рис. 3.1.5 показан другой пример искажений сигнала при усечении. Исходный аналоговый сигнал был вырезан из массива данных на интервале k = {0..60}, дискретизирован и переведен в цифровой форме в спектральную область для обработки. Дискретизация сигнала вызвала периодизацию его спектра, а дискретизация спектра вызвала периодизацию его динамического представления. Но на точках k=0 и k=60 в периодическом повторении исходного сигнала при усечении образовался скачок функции с бесконечным частотным спектром, а главный диапазон спектра дискретизированного сигнала ограничен интервалом его дискретизации (wN=1/2Dt). Следовательно, спектр сигнала является искаженным за счет наложения спектров боковых периодов, а при восстановлении аналогового сигнала по спектру главного диапазона он восстанавливается из усеченного спектра. Это приводит к появлению на скачке функции периодического повторения динамического представления сигнала явления Гиббса на обоих его концах, что и можно видеть на рис. 3.1.5 (сплошная тонкая кривая).

Описание: D03-02

Рис. 3.1.5.

Практически это означает, что при частотной обработке вырезанного сигнала будет обрабатываться не спектр исходного сигнала, а спектр, которому соответствует сигнал, восстанавливаемый по данному спектру с наложенным явлением Гиббса.

3.2. Весовые функции /л16/.

Естественным методом нейтрализации нежелательных эффектов усечения сигналов во временной области (и любой другой области аргументов) является изменение окна селекции сигнала таким образом, чтобы частотная характеристика окна селекции при свертке как можно меньше искажала спектр сигнала. Что последнее возможно, показывает, например, даже такая простая модификация прямоугольной функции, как уменьшение в два раза значений ее крайних членов. Фурье-образ модифицированной П-функции уже рассматривался нами в составе сглаживающих фильтров МНК 1-го порядка и отличается от обычной П-функции с тем же окном выходом в ноль на частоте Найквиста и несколько меньшей амплитудой осцилляций при небольшом расширении главного максимума. В силу тождественности всех свойств прямого и обратного преобразований Фурье все ниже рассматриваемое действительно и для нейтрализации явлений Гиббса во временной области при усечениях спектров.

Нейтрализация явления Гиббса в частотной области. Рассмотрение продолжим с формулы (3.1.2) при усечении произвольного оператора фильтра h(n) прямоугольным селектирующим окном ПN(n). Период осцилляций суммы усеченного ряда Фурье (3.1.2) равен периоду последнего сохраненного либо первого отброшенного члена ряда. С учетом этого фактора осцилляции частотной характеристики могут быть существенно сглажены путем усреднения по длине периода осцилляций в единицах частоты, т.е. при нормированной свертке с Пr(w) - импульсом, длина которого равна периоду осцилляций r = 2p/(N+1). Эта свертка отобразится во временной области умножением коэффициентов фильтра h(n) на множители, которые являются коэффициентами преобразования Фурье частотной П-образной сглаживающей функции Пr(w):

H'N(w) = HN(w) * Пr(w) ó hnsN(n) = h(n)ПN(n)sN(n),

                             p(n) = ПN(n)sN(n) = sinс(pn/(N+1)),   |n| £ N.                (3.2.1)

Описанная операция носит название сглаживания Ланцоша. Произведение ПN(n)sN(n) ≡ sN(n) представляет собой новое весовое окно селекции p(n) взамен прямоугольного окна. Функцию sN(n) обычно называют временной весовой функцией (окном). Вид и частотная характеристика весового окна Ланцоша в сопоставлении с прямоугольным окном приведены на рис. 3.2.1.

Рис. 3.2.1. Весовая функция Ланцоша.

Как видно на рисунке, частотная характеристика весовой функции Ланцоша по сравнению с П-образной функцией имеет почти в 4 раза меньшую амплитуду осцилляций, но при этом ширина главного максимума увеличилась примерно на 1/4. Отметим, однако, что если амплитуда осцилляций (в единицах амплитуды главного максимума) определяется выбранным типом весовой функции, то ширина главного максимума, которой определяется ширина переходной зоны (вместо скачка функции) зависит от размеров весового окна и соответственно может изменяться под поставленные условия (уменьшаться увеличением размера 2N+1 весового окна).

Весовые функции. В настоящее время известны десятки различных по эффективности весовых функций. В идеальном случае хотелось бы иметь весовую свертывающую функцию с минимальной амплитудой осцилляций, высокую и узкую в главном максимуме, и при этом с минимальными размерами весового окна.

В таблицах 3.2.1 и 3.2.2 приведены формулы и основные спектральные характеристики наиболее распространенных и часто используемых весовых окон. Носители весовых функций, в принципе, являются неограниченными и при использовании в качестве весовых окон действуют только в пределах окна и обнуляются за его пределами (как и в (3.2.1)), что выполняется без дальнейших пояснений. Для упрощения записи формулы приводятся в аналитической, а не в дискретной форме, с временным окном 2t, симметричным относительно нуля (0t). При переходе к дискретной форме окно 2t заменяется окном 2N+1, а значения t - номерами отсчетов n (t = nDt). Следует заметить, что большинство весовых функций на границах окна (n = N) принимают нулевые или близкие к нулевым значения, т.е. фактическое окно усечения данных занижается на 2 точки. Последнее исключается, если принять 2t = (2N+3)Dt.

Таблица 3.2.1.

Основные весовые функции

Временное окно

Весовая функция

Фурье-образ

Естественное (П)

П(t) = 1, |t|£t; П(t) = 0, |t|>t

П(w) = 2t sinc[wt]

Бартлетта (D)

b(t) = 1-|t|/t

B(w) = t sinc2(wt/2).

Хеннинга, Ганна

p(t) = 0.5[1+cos(pt/t)]

0.5П(w)+0.25П(w+p/t)+0.25П(w-p/t)

Хемминга

p(t) = 0.54+0.46·cos(pt/t)

0.54П(w)+0.23П(w+p/t)+0.23П(w-p/t)

Карре (2-е окно)

p(t) = b(t)·sinc(pt/t)

t·B(w)*П(w), П(w) = 1 при |w|<p/t

Лапласа-Гаусса

p(t) = exp[-b2(t/t)2/2]

[(t/b) exp(-t2w2/(2b2))] * П(w)

Кайзера-Бесселя

 

p(t) =

Jo[x] =[(x/2)k/k!]2

Вычисляется преобразованием Фурье.

Jo[x] - модифицированная функция

           Бесселя нулевого порядка

Таблица 3.2.2.

Характеристики спектров весовых функций

Параметры

Ед.

изм.

П-

окно

Барт-

летт

Лан-цош

Хен-

нинг

Хем-минг

Кар-

ре

Лап-лас

Кай-зер

Амплитуда:

  Главный пик

  1-й выброс(-)

  2-й выброс(+)

Ширина Гл.пика

Положения:

     1-й нуль

     1-й выброс

     2-й нуль

     2-й выброс

t

%Гл.п.

- “ -

wt/2p

wt/2p

wt/2p

wt/2p

wt/2p

2

0.217

0.128

0.60

0.50

0.72

1.00

1.22

1

-

0.047

0.89

1.00

-

-

1.44

1.18

0.048

0.020

0.87

0.82

1.00

1.29

1.50

1

0.027

0.0084

1.00

1.00

1.19

1.50

1.72

1.08

0.0062

0.0016

0.91

1.00

1.09

1.30

1.41

0.77

-

-

1.12

-

-

-

-

0.83

0.0016

0.0014

1.12

1.74

1.91

2.10

2.34

0.82

.00045

.00028

1.15

1.52

1.59

1.74

1.88

Рис. 3.2.2. Примеры весовых функций.

Сравнительный вид весовых функций приведен на рис. 3.2.2. Расчет функций проведен с исключением нулевых значений на границах весового окна.

Спектральные окна Бартлетта и Карре не имеют отрицательных выбросов и применяются, в основном, для усечения корреляционных функций. Функция Карре не имеет нулей и представляет собой положительно убывающую функцию. Функции Хеннинга и Хемминга примерно одного класса, функция Хемминга является улучшенным вариантом функции Хеннинга. Частотные образы функций Бартлетта и Хемминга приведены на рис. 3.2.3.

Рис. 3.2.3. Частотные функции весовых окон.

Весовые окна Лапласа и Кайзера - усеченные функции соответственно Гаусса и Бесселя. Степень усечения зависит от параметра b. Характеристики функций, приведенные в таблице 3.2.2, действительны при b=3 для окна Лапласа и  b=9 для окна Кайзера. При уменьшении значения b крутизна главного максимума сглаживающих функций увеличивается (ширина пика уменьшается), но платой за это является увеличение амплитуды осцилляций.

Рекомендация для Вас - 8 Сопротивление в цепи переменного тока.

Рис. 3.2.4. Частотные функции весовых окон.

Функции Лапласа и Кайзера являются универсальными функциями. По-существу, их можно отнести к числу двупараметровых: размером окна 2t (числом N) может устанавливаться ширина главного максимума, а значением коэффициента b - относительная величина осцилляций на частотной характеристике весовых функций, причем вплоть до осцилляций П-окна при b=0. Это обусловило их широкое использование, особенно при синтезе операторов фильтров.

Попутно заметим, что достаточно гладкие частотные характеристики весовых функций позволяют использовать их в качестве сглаживающих (низкочастотных НЦФ).

(!!!КР5- Разработка методики расчета специальных весовых функций типа П-окна с гауссовской концовкой)

(!!!КР6-Использование весовых функций в качестве сглаживающих)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее