Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Антенно-фидерные устройства » Классификация антенных решеток

Классификация антенных решеток

2021-03-09СтудИзба

Лекция 7

Классификация антенных решеток

Простейшая направленная антенна – симметричный вибратор – имеет невысокую направленность. Для увеличения направленности действия на первых этапах развития антенной техники стали применять систему вибраторов – антенные решетки (АР). Антенные решетки наиболее распространенный класс современных антенн, элементами которых могут быть как слабонаправленные излучатели (металлические и щелевые вибраторы, волноводы, диэлектрические стержни, спирали и т. д.), так и остронаправленные антенны (зеркальные, рупорные и др.).

Применение антенных решеток обусловлено следующими причинами. Решетка из N элементов позволяет увеличить приблизительно в N раз КНД (и соответственно усиление) антенны по сравнению с одиночным излучателем, а также сузить луч для повышения точности определения угловых координат источника излучения в навигации, радиолокации и других радиосистемах. С помощью решетки удается поднять электрическую прочность антенны и увеличить уровень излучаемой (принимаемой) мощности путем размещения в каналах решетки независимых усилителей высокочастотной энергии.

Одно из важных преимуществ решеток – возможность быстрого обзора (сканирования) пространства за счет качания луча антенны электрическими методами (электрического сканирования). Помехозащищенность радиосистемы зависит от уровня боковых лепестков (УБЛ) антенны и возможности подстройки (адаптации) к помеховой обстановке. Антенна решетка – необходимое звено для создания такого динамического пространственно-временного фильтра или просто для уменьшения УБЛ.

Одна из важнейших задач современной бортовой радиоэлектроники – создание комплексированной системы, совмещающей несколько функций. Например, функций связи, РЛС, радионавигации и т. д.

Существенное значение имеет возможность создания антенной решетки с электрическим сканированием с несколькими лучами (многолучевой, моноимпульсной и т. д.), работающей на различных частотах (совмещенной), и имеющей различные характеристики.

Имеется ряд конструктивно-технологических преимуществ антенных решеток для бортовых и наземных устройств по сравнению с другими классами антенн. Так, например, улучшение массогабаритных характеристик бортовой аппаратуры происходит за счет использования печатных антенных решеток. Снижение стоимости больших радиоастрономических телескопов достигается благодаря применению зеркальных антенных решеток.

Антенные решетки могут быть классифицированы по основным признакам: геометрии расположения излучателей в пространстве, способу их возбуждения, закономерности размещения излучающих элементов в самой решетке, способу обработки сигнала в решетке, амплитудно-фазовому распределению токов (поля) по решетки и типу излучателей.

Рекомендуемые материалы

В зависимости от геометрии расположения излучателей АР подразделяются на: линейные, дуговые, кольцевые, плоские, выпуклые (цилиндрические, конические, сферические и др.) и пространственные (трехмерные) – рис.7.1.

Пространственная структура решетки в простейшем случае представляет собой систему из двух плоских решеток, параллельно расположенных в пространстве.

Размещение излучателей в самой решетки может быть эквидистантное – шаг (расстояние между излучателями) величина постоянная, и неэквидистантное – шаг меняется по определенному закону или случайным образом. В плоской АР излучатели могут быть расположены в узлах прямоугольной или косоугольной координатной системы.

http://kunegin.narod.ru/ref3/far/images/image1.gif

Рис. 7.1 – Антенные решетки: а - линейная решетка; б - дуговая решетка; в - кольцевая решетка; г - плоская решетка; д - цилиндрическая решетка; е - коническая решетка;
ж - сферическая решетка; з - неэквидистантная решетка

Если косоугольная сетка состоит из равносторонних треугольников, то такая структура образует  правильные шестиугольники и называется гексагональной.

По способу возбуждения (питания) излучателей различают решетки с последовательным и параллельным питанием. Возможен также пространственный способ возбуждения, который называют иногда оптическим или "эфирным".

В больших антенных решетках применяют комбинации последовательно-параллельного питания излучателей, особенно в случае разделения всей антенной решетки на подрешетки (модули) меньших размеров. При последовательном питании элементы решетки возбуждаются падающей волной последовательно друг за другом, а при параллельном - независимо.

Частный случай параллельного питания – схема типа "елочка", образующаяся за счет каскадного деления подводимой мощности на две части. В случае пространственного возбуждения элементы решетки возбуждаются падающей волной от первичного облучателя.

В питающем антенную решетку тракте (фидере) возможна различная пространственно-временная обработка сигнала. Изменение фазового распределения в решетке с помощью системы фазовращателей в питающем тракте позволяет управлять максимумом диаграммы направленности. Такие решетки называются фазированными антенными решетками (ФАР). Если к каждому излучателю ФАР иди к их группе подключается усилитель мощности, генератор или преобразователь частоты, то такие решетки называются активными фазированными антенными решетками (АФАР). Приемные АР с саморегулируемым амплитудно-фазовым распределением в зависимости от помеховой обстановки называются адаптивными. Приемные АР с обработкой сигнала методами когерентной оптики называются радиооптическими. Приемные АР, в которых вся обработка ведется цифровыми процессами, называются цифровыми АР.

Совмещенные антенные решетки имеют в своем излучающем раскрыве два (или более) типа излучателей, каждый из которых работает в своем рабочем диапазоне.

Антенные решетки, формирующие с одного излучающего раскрыва несколько независимых (ортогональных) лучей и имеющие соответствующее число выходов, называются многолучевыми.

В зависимости от соотношения амплитуд токов возбуждения различают решетки с равномерным, экспоненциальным и симметрично спадающим амплитудными распределениями относительно центра решетки. Если фазы токов излучателей изменяются вдоль линии их размещения по линейному закону, то такие решетки называют решетками с линейным фазовым распределением. Частный случай таких решеток – синфазные решетки, у которых фазы тока всех элементов одинаковы.

Фазированные антенные решетки. Схемы построения. Элементная база

Фазированные антенные решетки отличаются от АР включением в антенный тракт системы фазовращателей или коммутаторов, осуществляющей управление фазовым или амплитудно-фазовым распределением для электрического сканирования. Нашли применение различные схемы построения ФАР в зависимости от требований к системе. Пространственный способ возбуждения (называемый еще распределителем оптического типа) допускает два варианта антенн: отражательную ФАР (рис.7.2) (рис.1) и проходную ФАР – рис.7.3 (рис.2).

http://kunegin.narod.ru/ref3/far/images/ris1.gif

Рис. 7.2 – Пространственный способ возбуждения

Отражательная решетка

Фидерный способ возбуждения (распределитель закрытого типа) допускает последовательное, параллельное, двоично-этажное (елочки) питание излучателей и фазовращателей и их комбинации. Применяются гибридные антенны – совместное использование ФАР и антенн оптического типа. Сочетание радио-линзы с ФАР или применение направленных излучающих элементов ФАР (зеркал, подрешеток и т. д.) позволяет получить те же результаты: уменьшение числа управляемых фазовращателей при ограниченном секторе сканирования.

http://kunegin.narod.ru/ref3/far/images/ris2.gif

Рис. 7.3 – Пространственный способ возбуждения

Проходная решетка

Сочетание линзы с ФАР расширяет сектор сканирования плоской ФАР. Одновременно с этим происходит ухудшение других характеристик антенной системы.

Цилиндрическая решетка излучателей, подключаемая коммутаторами (с фазовращателями или без них) к возбуждающей системе полосковых линий, волноводов, радиальных волноводов и других элементов, позволяет сканировать в широком секторе углов. Возможно применение многолучевых антенн, формирующих с одного излучающего раскрыва несколько ДН, каждой из которых соответствует входной тракт антенны.

Многоканальный коммутатор, подключенный к входам многолучевой антенны, позволяет дискретно перемещать луч в пространстве в соответствии с характеристиками многолучевой антенны.

Необходимость использования многолучевого режима в радиотехнических системах приводит к созданию ФАР с несколькими независимыми сканирующими лучами. Возможный путь решения таких задач состоит в совмещении многолучевых антенн с системой управляемых фазовращателей и возбуждаемых через направленные ответвители магистральных волноводов.

Каждая из приведенных схем построения ФАР имеет свои преимущества и недостатки, и выбор той или иной схемы определяется поставленными требованиями к радиотехнической системе, последующей обработкой СВЧ-сигнала, а также элементной базой.

Элементная база ФАР включает: излучатели, фазовращатели, коммутаторы, сумматоры (делители) мощности и линии передач СВЧ.

Центральным элементом – "кирпичиком", из которого строится ФАР, служит фазовращатель. Его важнейшими характеристиками являются мощности потерь, управления и предельно допустимая рабочая полоса частот, быстродействие, зависимость фазового сдвига от управляющего воздействия, габариты и стоимость. Волноводное, коаксиальное, полосковое, микрополосковое исполнение фазовращателя определяет выбор не только тракта СВЧ, но и тип излучателя. В диапазоне СВЧ нашли широкое применение полупроводниковые (p-i-n-диодные) и ферритовые фазовращатели, которые принято разделять на проходные или отражательные, взаимные и невзаимные, дискретные или плавные, с памятью фазового сдвига и без запоминания. Проходной фазовращатель – это 4-хполюсное согласованное устройство СВЧ, вносящее дополнительный фазовый сдвиг от 0 до 360° - в зависимости от управляющего сигнала. Отражательный фазовращатель - это двухполюсное устройство (короткозамкнутый отрезок лини СВЧ), у которого фаза отраженной волны также управляется. Короткое замыкание выходных клемм в проходном фазовращателе преобразует его в отражательный.

Отражательный фазовращатель может быть преобразован в проходной за счет применения мостового устройства. Взаимный фазовращатель обладает одинаковым вносимым фазовым сдвигом при прямом и обратном направлении распространения волны, невзаимный этим свойством не обладает. Невзаимный фазовращатель, как правило, использует в электрически управляемой среде невзаимный аффект, например эффект Фарадея в феррите. Взаимный отражательный фазовращатель с Y-циркулятором образует проходной невзаимный фазовращатель.

Дискретный фазовращатель изменяет фазу выходного сигнала дискретно (скачками) на

http://kunegin.narod.ru/ref3/far/images/for1.jpg.

Величину М для удобства управления ЭВМ выбирают равной двум в целой степени

http://kunegin.narod.ru/ref3/far/images/for2.jpg,

где p = 1, 2, 3 – разряд фазовращателя.

Дискретный фазовращатель вносит максимальную величину фазовой ошибки D/2 . Нашли применение фазовращатели с http://kunegin.narod.ru/ref3/far/images/for4.jpg = 90° – двухразрядные, http://kunegin.narod.ru/ref3/far/images/for4.jpg= 45° – трехразрядные, http://kunegin.narod.ru/ref3/far/images/for4.jpg=22,5° – четырехразрядные и с меньшими дискретами. Серийно выпускаются (как готовые изделия) полупроводниковые и ферритовые дискретные фазовращатели с использованием прямоугольной петли гистерезиса (ППГ). Они обладают элементом памяти, т. е. сохраняют внесенный фазовый сдвиг после снятия управляющего воздействия. Аналоговые фазовращатели – с плавным изменением фазы от управляющего тока (напряжения) – могут иметь дискретность фазирования при сопряжении с системой управления лучом антенны ЭВМ. Нашли широкое применение ферритовые взаимные и невзаимные фазовращатели, проходные и отражательного типа для различных поляризаций волны.

Разработаны фазовращатели на различные уровни мощности, рабочие диапазоны и разрядности. Ферритовые фазовращатели на длинах волн короче 5 см могут обладать меньшими потерями, чем полупроводниковые. Полупроводниковые фазовращатели имеют большее быстродействие и меньшие массу и габариты, но стоимость их выше. Увеличение разрядности приводит к дополнительным потерям, большей стоимости и увеличению мощности управления.

Размещение в плоской решетке с шагом (0,5...0,7)http://kunegin.narod.ru/ref3/far/images/for5.jpg излучателей с фазо-вращателями, элементами крепления и управляющими цепями, накладывает жесткие ограничения на их размеры. Эти трудности растут с уменьшением рабочей длины волны, и в миллиметровом диапазоне волн (особенно в коротковолновой части) приводят к новым конструктивным решениям электрически сканирующих антенн: электрически управляемым линзам, голографическим управляемым транспарантам и др. Одним из важнейших критерием выбора фазовращателя является его стоимость, в значительной степени определяющая стоимость всей ФАР.

В диапазонах KB и УКВ нашли применение в качестве устройств фазирования управляемые линии задержки – коммутируемые отрезки линии с волной Т длиной порядка половины раскрыва ФАР. Такие фазовращатели, называемые "тромбонными", обеспечивают работу в широком диапазоне частот. Известны СВЧ-фазовращатели, использующие сегнетоэлектрики и газоразрядную плазму, но не нашедшие практического использования из-за низкой температурной стабильности и других неудовлетворительных характеристик. Вторым важнейшим элементом ФАР СВЧ-диапазона является излучатель, в качестве которого используют вибраторы, открытые концы волноводов, диэлектрические стержневые, спиральные, щелевые и печатные излучатели и другие слабонаправленные антенны. Выбор типа излучателя определяется рабочим диапазоном и полосой частот, излучаемой мощностью, требуемой поляризацией, сектором сканирования луча и конструктивным исполнением фазовращателя и тракта СВЧ. В рабочей полосе частот и секторе сканирования излучатель должен иметь ДН в системе без провалов и быть согласован. Оптимальная ДН излучателя плоской решетки, при которой излучатель будет во время сканирования согласован, а КНД - максимальным, представляется как http://kunegin.narod.ru/ref3/far/images/for6.jpg, где http://kunegin.narod.ru/ref3/far/images/for7.jpg- угол, отсчитываемый от нормали к раскрыву для произвольной плоскости. Это легко показать следующим образом. Допустим, что излучатели в секторе сканирования согласованы, т. е. входные сопротивления неизменны. Следовательно, излучаемая мощность http://kunegin.narod.ru/ref3/far/images/for8.jpgу при отклонении луча неизменна. Из теории решеток и излучающих апертур известно, что при отклонении луча КНД падает по закону http://kunegin.narod.ru/ref3/far/images/for10.jpgт.еhttp://kunegin.narod.ru/ref3/far/images/for9.jpg. Так как

http://kunegin.narod.ru/ref3/far/images/for11.jpg,

где http://kunegin.narod.ru/ref3/far/images/for12.jpg,

"8.5. Блеск" - тут тоже много полезного для Вас.

и поле антенны http://kunegin.narod.ru/ref3/far/images/for13.jpgесть сумма полей элементов, т. е. http://kunegin.narod.ru/ref3/far/images/for14.jpg.

Это справедливо для эквидистантных больших решеток, в которых можно не учитывать краевые эффекты. Отличие ДН излучателя от идеальной, приводит к падению КНД и соответствующему рассогласованию тракта.

ДН элемента в решетке зависит от параметров излучателя, шага и конфигурации решетки, наличия конструктивных элементов крепления, укрытия и т. д. Улучшение ДН элемента и, следовательно, согласование можно достигать благодаря применению дополнительных элементов: многослойных диэлектрических покрытий, направляющих элементов (директоров, рефлекторов), диэлектрических заполнении, импедансных поверхностей и т. д.

В последние годы были проведены обширные теоретические и экспериментальные исследования перечисленных излучателей ФАР с целью поиска наилучших результатов. В теории были разработаны физические и математические модели для численных методов решения соответствующих краевых электродинамических задач. Созданы программы расчета характеристик и их оптимизации, которые позволяют по заданным требованиям к ФАР выбрать излучатели различных типов.

К элементной базе ФАР относятся система распределения мощности СВЧ на различных линиях передачи: мостовые устройства, направленные ответвители, двухканальные и многоканальные системы распределения мощности, поляризаторы и другие элементы трактов СВЧ антенн. Потребность в этой элементной базе зависит от выбранной схемы построения поляризационных характеристик. При пространственном способе возбуждения моноимпульсной ФАР используется несколько мостов СВЧ, с помощью которых формируются суммарно-разностные ДН. Фидерный способ возбуждения или создание ФАР с управляемой поляризацией резко усложняет систему распределения мощности СВЧ.

Широкоугольное сканирование в выпуклых ФАР или управление поляризацией поля дополняет элементную базу коммутаторами СВЧ.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее