Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Аналоговая и цифровая электроника » Усилительные каскады на двух транзисторах

Усилительные каскады на двух транзисторах

2021-03-09СтудИзба

3.6 Усилительные каскады на двух транзисторах

3.6.1 Каскодный усилитель


К усилительным каскадам на двух транзисторах принято относить каскодный усилитель и дифференциальный усилитель. Первый принято использовать там, где схема усилителя ОЭ не удовлетворяет по своим частотным свойствам. В усилителе (рисунок 3.6.1 –а) выход связан со входом

через емкость коллекторного перехода транзистора СК, что приводит к увеличению входной емкости каскада до значения

                       ,

где Ки ≈ αRK/RЭ - коэффициент усиления каскада по напряжению. Это ограничивает верхнюю граничную частоту ωВ и может привести к самовозбуждению каскада на высоких частотах.

Для уменьшения влияния емкости СК на частотные характеристики каскада ОЭ применяется каскодная схема ОЭ-ОБ (рисунок 3.6.1-б). Здесь транзистор Т1 включен по схеме ОЭ, а транзистор Т2 - по схеме ОБ (потенциал базы транзистора Т2 зафиксирован источником Е). Нагрузкой транзистора Т1 является малое входное сопротивление транзистора Т2

                  

При этом транзистор Т1 работает в режиме, практически близко к короткому замыканию коллекторной цепи, и его коэффициент усиления очень мал:

Рекомендуемые материалы

                           

Благодаря этому практически исключается связь между коллектором транзистора Т1 и его базой через емкость СК1 и значительно снижается влияние емкости СК1 на граничную частоту ωВ.

Емкость СК2 через источник Е соединена с общей шиной. Поэтому обратная связь между выходом и входом каскодной схемы практически отсутствует, что резко снижает опасность самовозбуждения усилителя.

Верхняя граничная частота каскодной схемы без учета частотной зависимости коэффициентов передачи тока α1 и α2 определяется, как и для каскада ОБ, емкостью СК2 и сопротивлением RК (постоянной времени RК СК2) и значительно больше, чем в каскаде ОЭ, где постоянная времени за счет емкости СК при большем внутреннем сопротивлении источника сигнала RГ достигает значения СК (b0+1)RК.

Коэффициент передачи тока каскадной схемы:

                                        (3.6.1)

Из (3.6.1) видно, что коэффициент передачи тока в каскодной схеме мало отличается от коэффициента передачи тока α1 транзистора Т1. Следовательно, коэффициент усиления и входное сопротивление будут такими же, как и в каскаде ОЭ. Таким образом, каскодкая схeмa ОЭ-ОБ, обладая такими же усилительными свойствами, как и каскад ОЭ, имеет более широкую полосу пропускания (как каскад ОБ) и в значительно меньшей степени подвержена самовозбуждению. Благодаря таким свойствам каскодная схема ОЭ-ОБ находит широкое применение в широкополосных и резонансных усилителях и в дифференциальных усилителях для получения большего усиления и хороших частотных свойств.

На рис. 3.6.1 -в приведена каскодная схема ОК-ОБ. Она применяется в составе АИС тогда, когда постоянный уровень выходного напряжения должен быть ниже уровня входного напряжения для обеспечения непосредственной вязи с последующими каскадами. Транзистор Т1 включен по схеме ОК, а транзистор Т2 - по схеме ОБ. Включение Т2 по схеме ОБ позволяет исключить обратную связь через емкость СК2 между выходом и входом усилителя, что расширяет полосу пропускания и препятствует самовозбуждению. Транзистор Т1, включенный по схеме ОК, обеспечивает большое входное сопротивление.

Коэффициент усиления каскодной схемы, считая коэффициент передачи каскада ОК близким к единице,описывается выражением:

                   

Учитывая, что RГ = RВЫХ.1=rЭ1+ rБ1(1-α1) и RВХ.2 = rЭ2+ rБ2(1-α2) и считая параметры транзисторов одинаковыми, можно записать

                                                      (3.6.2)

Таким образом, усиление каскодной схемы близко к усилению каскада ОЭ. Для получения большего усиления, вместо коллекторной нагрузки RK включают стабилизатор тока. Каскодная схема ОК-ОБ применяется во входных дифференциальных каскадах операционных усилителей.

3.6.2 Дифференциальные усилители. Принцип действия и

основные параметры

Дифференциальный усилитель (ДУ) приведен на рисунке 3.6..2. Он

имеет два входа и в общем случае два выхода и служит для усиления разности напряжений, подаваемых на его входы:

ДУ усиливает сигнал, как правило, с постоянной составляющей, т, е. является усилителем постоянного тока (УПТ).

Параметры плеч ДУ одинаковы (RК1 = RК2 = RК), транзисторы Т1 и Т2 идентичны. Общей эмиттерной нагрузкой транзисторов Т1 и Т2 является резистор RЭ. Совместно с источником ЕЭ он образует генератор тока I0. Нагрузка может подключаться к одному из выходов (несимметричный выход) или между коллекторами транзисторов (симметричный выход). При симметричном выходе плечи ДУ (резисторы RК1 , RК2 и транзисторы Т1Т2) образуют сбалансированный мост, в диагональ которого включается нагрузка.

Получение хорошей симметрии плеч ДУ при выполнении его на дискретных элементах затруднено, особенно в широком диапазоне температур. Поэтому транзисторные ДУ не получили широкого распространения. С переходом к интегральной технологии высокая симметрия плеч ДУ в широком диапазоне температур достигается согласованием параметров транзисторов и резисторов технологическим путем. Благодаря этому ДУ получили широкое распространение в АИС.

Рассмотрим принцип работы и получим основные усилительные параметры ДУ. Для этого представим входные сигналы в виде синфазных и дифференциальных (разностных) составляющих:

                                            (3.6.3)

                            (3.6.4)

Полусумма

                           (3.6.5)

называется синфазным входным напряжением (еСФ, UВХ.СФ), а полуразность

                              (3.6.6)

дифференциальным входным напряжением (еД, UВХ.Д).

С учетом принятых определений входные сигналы можно представить следующим образом:

                                                (3.6.7)

             (3.6.8)

Как видно из выражений (3.6.7), (3.6.8), синфазные входные напряжения имеют одинаковую величину и полярность, а дифференциальные - одинаковую величину и разную полярность.

Пример1. Пусть еГ1 = 0,6В и еГ2 = 0,3В. Тогда еСФ = 0,45В и еД=0,15В. Если еГ1 = 0,4В и еГ2 = 0,1В. Тогда еСФ = 0,25В и еД=0,15В.

В этих примерах дифференциальные сигналы одинаковы, а синфазные - разные. Синфазное входное напряжение еСФ - это уровень на входах, относительно которого подаются дифференциальные сигналы на первый вход (UВХ.Д1= UВХ.Д ) и на второй вход (UВХ.Д2= -UВХ.Д).

Представим, таким образом, выходные напряжения через синфазные и дифференциальные составляющие. При этом будем учитывать, что выходные напряжения содержат постоянную составляющую UВЫХ.01= UВЫХ.02= UВЫХ.0, которая имеет место при еГ1 = еГ2 = 0. С учетом этого переменные составляющие выходных напряжений принимают вид:

                                (3.6.9)

                                               (3.6.10)

Полные значения выходных напряжений с учетом постоянной составляющей UВЫХ.0 определяются соотношениями:

        

Введем понятия коэффициентов усиления (передачи): коэффициент передачи синфазного напряжения

 или 

коэффициент усиления дифференциального напряжения

 или 

Оцределим основные параметры ДУ. Для этого рассмотрим три случая.

1. Входные напряжения равны нулю, еГ1 = еГ2 = 0 (рис. 3.6.3-а). В этом случае еСФ = 0В и еД=0В и, следовательно, UВЫХ.СФ = 0 и UВЫХ.Д = 0, а UВЫХ.1 = UВЫХ.2 = UВЫХ.0. Можно определить UВЫХ.0 .При еГ1 = еГ2 = 0 оба транзистора открыты и общий эмиттерный ток I0 делится поровну между ними:

                          

Тогда коллекторные токи будут

                       

Зная коллекторные токи, можно определить

    


Общий эмиттерный ток I0 определим из рисунка 3.6.2 при еГ1 = еГ2 = 0

                         

Тогда

                                              (3.6.11)

2. На входы поданы только синфазные сигналы (рис. 3.6.3-б)Пусть , еГ1 = еГ2 =еСФ > 0, а еСФ=0 Тогда эмиттерные токи транзисторов Т1 и Т2(под действием сигнала еСФ >0 получают приращения

                 

Последнее соотношение позволяет представить ДУ в виде одного каскада ОЭ с эмиттерной нагрузкой 2RЭ (рисунок 3.2.6). Коэффициент усиления такого каскада по аналогии с каскадом ОЭ определяется соотношениями:

 (3.6.12)

      (3.6.13)

Выражения (3.6.12), (3.6.13) справедливы при RН >> RК Если сопротивление нагрузки RН сравнимо с RК, то вместо RК надо учитывать эквивалентное сопротивление нагрузки

                               

Из выражений (3.6.12), (3.6.13) видно, что с увеличением RЭ коэффициент передачи синфазного сигнала КеСФ, КСФ уменьшается. Это объясняется действием отрицательной обратной связи, создаваемой резистором RЭ.

Синфазное выходное напряжение UВЫХ.СФ (рис. 3.6.3,-б) определяется соотношением

           

3. На входы поданы, только дифференциальные сигналы (рис. 3.6.3 - в). Пусть еГ1 = - еГ2 . И пусть еГ1 >0. Тогда еСФ= 0, а еД1 = еГ1>0, еД2 = еГ2< 0. Ток IЭ1 возрастет на ∆IЭ1 а ток IЭ2 уменьшится на ∆IЭ2. Приращение общего эмиттерного тока ∆I0 составит ∆I0= ∆IЭ1 - IЭ2 и при симметрии плеч ДУ

                     ∆IЭ1 = ∆IЭ2 и ∆I0 = 0.

Падение напряжения на резисторе RЭ от дифференциального сигнала ∆UЭД = ∆I0RЭ= 0. Это означает, что резистор RЭ не создает отрицательной обратной связи для дифференциального сигнала и позволяет представить каждое из плеч ДУ в виде каскада ОЭ (рис. 3.2.4). Тогда коэффициент усиления дифференциального сигнала

      (3.6.14)

                               (3.6.15)

Из выражений (3.6.14), (3.6.15) видно, что коэффициент усиления дифференциального сигнала не зависит от RЭ и три большом сопротивлении RЭ Ке.Д>>Ке.СФ (Ке.Д>>Ке.СФ). Другими словами, ДУ усиливает дифференциальное входное напряжение и ослабляет синфазное.

Зная коэффициенты усиления КеСФ (или КСФ), Ке.Д (или КД) и постоянную составляющую выходного напряжения UВЫХ.0 можно определить полные выходные напряжения ДУ:

       

Выходные напряжения, кроме дифференциальной составляющей Ке.ДеД, являющейся полезным сигналом, содержат синфазную составляющую, которая является ошибкой.

Для уменьшения синфазного сигнала применяют симметричный выход. При этом выходное напряжение

          (3.6.16)

где индексами «1» и «2» обозначены коэффициенты усиления и постоянные составляющие выходных напряжений левого и правого плеч ДУ соответственно. При симметрии плеч выходное напряжение содержит только разностный сигнал

                                     

             

Реальный усилитель всегда имеет асимметрию плеч. Поэтому даже при симметричном выходе выходное напряжение содержит синфазный сигнал и разность постоянных составляющих, которые являются ошибками, а при несимметричном выходе синфазный сигнал на каждом из выходов будет значительно больше. Для уменьшения погрешностей надо ослаблять (подавлять) синфазный сигнал и стабилизировать уровни выходных напряжений UВЫХ01 и UВЫХ02 . Ослабление синфазного сигнала количественно оценивают коэффициентом ослабления «синфазных входных напряжений

             или

Из соотношений (3.128), (3.129), (ЗЛЗО) и (3.131) получаем

(3.6.17)

а при RГ=0

(3.6.18)

Из выражений (3.6.17), (3.6.18) видно, что с увеличением сопротивления резистора RЭ возрастает коэффициент ослабления. Для получения большого коэффициента ослабления вместо резистора RЭ включают стабилизатор тока на транзисторах ТЗ, Т4 (рисунок 3.6.4). При низкоомном делителе R4, R5, когда R4R5/ (R4+R5)<<(b0+1)R3, транзистор Т3 включен по схеме, близкой к ОБ, и динамическое сопротивление стабилизатора определяется сопротивлением коллекторного перехода транзистора ТЗ, т. е. RСТ=rK. Подставляя в выражения (3.6.17), (3.6.18) вместо RЭ сопротивление rК, можно записать

                                                  (3.6.19)

а при RГ =0

                                                               (3.6.20)

 Пример. Пусть RГ = 200 Ом, rБ = 300 Ом, RЭ = 1 кОм, rЭ =10 Ом, α0 = 0,98, rК =1 МОм. Тогда для ДУ без стабилизатора тока из выражения (3.6.18)

 или КОСЛ(дБ) = 40 дБ

В ДУ со стабилизатором тока из выражения (3.6.19)

  или КОСЛ(дБ) = 100 дБ

Как видно из примера, применение стабилизатора тока значительно увеличивает коэффициент ослабления синфазного сигнала. Кроме того, температурная стабилизация тока стабилизатора I0 с помощью транзистора Т4 в диодном включении обеспечивает стабилизацию уровней выходных напряжений UВЫХ01 и UВЫХ02 . Поэтому ДУ cо стабилизатором тока находят широкое применение в качестве входных каскадов интегральных операционных усилителей.

Важным параметром ДУ является входное сопротивление для дифференциального сигнала RВХ.Д или просто входное сопротивление RВХ. Это сопротивление со стороны одного из входов ДУ при заземленном другом входе. Если заземлить вход 2 (рис. 3.6.1), то эмиттерная цепь транзистора Т1 будет нагружена на входное сопротивление транзистора Т2, включенного по схеме ОБ. Входное сопротивление такого каскада при одинаковых параметрах

транзисторов Т1 и Т2 определяется соотношением

           

где

                      

тогда

          

Учитывая, что

                    

получим

                                                          (3.6.21)

Таким образом, входное сопротивление ДУ обратно пропорционально общему эмиттерному току I0.

Точностные параметры ДУ. При анализе ДУ предполагалось, что аллели его симметричны (параметры плеч одинаковы). В реальных усилителях плечи несимметричны. Поэтому при еГ1 = еГ2.=0 выходное напряжение ДУ на симметричном выходе не равно нулю, UВЫХ ¹ 0. Кроме того, во входных цепях ДУ протекают входные токи IВХ1, IВХ2, создавая падения напряжений на «сопротивлениях RГ1, RГ2 . Если RГ1 ¹RГ2 или IВХ1¹IВХ2, что даже при отсутствии входных сигналов (еГ1 = еГ2.=0) на входе усилителя появляется дифференциальное напряжение UВХ.Д = IВХ1RВХ1 - IВХ2RВХ2, которое усиливается усилителем и является погрешностью ДУ. Для характеристики точности работы ДУ вводят точностные параметры.

Напряжение смещения UCM - это дифференциальное входное напряжение UСМ = UВХ 1- UВХ2 , при котором UВЫХ =0

Входной ток ДУ (средний входной ток) IВХ - это среднее арифметическое значение входных токов IВХ1 и IВХ2 при условии, что UВЫХ = 0

                       

Разность входных токов ∆IВХ - абсолютное значение разности входных токов, измеренных при UВЫХ =0

                      

Обычно разность входных токов на порядок меньше входного тока. К точностным параметрам относится также коэффициент ослабления синфазных входных напряжений КОСЛ.

3.6.3 Типы дифференциальных усилителей

Дифференциальные усилители широко применяются в аналоговых устройствах для усиления сигналов как постоянного, так и переменного тока. Их можно разделить на две группы:

- однокаскадные ДУ, которые выполняются в виде законченных ИС и применяются для усиления сигналов постоянного и переменного тока;

дифференциальные усилители, являющиеся входными и последующими каскадами многокаскадных операционных усилителей.

К первой группе относятся различные варианты основной схемы ДУ (рис. 3.6.4), которые используются в качестве усилителей постоянного и переменного тока. Они содержат, как правило, дополнительные элементы и выводы, позволяющие менять режим работы транзистора ТЗ стабилизатора тока (задавать разные значения тока I0). В некоторых типах усилителей предусмотрена возможность изменять ток I0 с помощью внешнего управляющего напряжения, подаваемого на базу транзистора Т3. Это позволяет изменять коэффициент усиления в широких пределах за счет изменения входного сопротивления (3.6.21) и используется для создания автоматической регулировки усиления.

Примерами ДУ настоянного тока являются усилители 122УД1, К198УТ1 и др. [11]. В усилителе К198УТ1 выходными каскадами являются эмиттерные повторители, что уменьшает выходное сопротивление. В нем предусмотрена также автоматическая регулировка усиления [11].

Дифференциальный усилитель К175УВ4 предназначен для усиления сигналов высокой частоты в полосе частот до 150 МГц. В качестве коллекторных нагрузок транзисторов включаются внешние навесные резисторы, через которые подается питающее напряжение, и навесной резонансный контур [11].

Во входных каскадах операционных усилителей применяют ДУ двух типов.

В основу первого типа положен ДУ с резистивными нагрузками и стабилизатором тока (рис. 3.6.4). Для расширения полосы пропускания и повышения устойчивости к самовозбуждению вместо транзисторов Т1 и Т2 применяют каскодные схемы ОЭ-ОБ (рис. ?????). Входное сопротивление увеличивают применением составных транзисторов ОК-ОБ (рис. ?????) или входных эмиттерных повторителей. При использовании составных транзисторов входное сопротивление ДУ (3.6.21) возрастает до значения

                       

Однако применение составных транзисторов и эмиттерных повторителей приводит к увеличению напряжения смещения UСМ и его температурного дрейфа.

В новых типах операционных усилителей применяют входные ДУ с несимметричным выходом. Упрощенная схема такого ДУ приведена на рисунке 3.6.5. Коллекторными нагрузками входных р-п-р траяаисторов Т1, Т2 является стабилизатор тока (транзисторы Т3,Т4). Большое динамическое сопротивление стабилизатора позволяет получить большое усиление при небольшом питающем напряжении К и требуемом уровне тока I0. На несимметричном выходе ДУ получается полное изменение дифференциального сигнала в отличие от основной схемы ДУ (рис. 3.6.4), у которой с несимметричного выхода снимается только половина дифференциального сигнала. Достигается это следующим образом. Пусть напряжение UВХ1 уменьшилось, а UВХ2 увеличилось на ∆UВХ. Тогда ток левого плеча IК1 увеличится, а ток правого плеча IК2 уменьшится на ∆ I относительно тока покоя

              

 В отражателе тока ТЗ, Т4 коллекторный ток транзистора Т4 (выходной ток отражателя IК4) всегда повторяет коллекторный ток транзистора Т3 (опорный ток IК3). Но IК3= IК1 следовательно,

                 

Выходной ток ДУ

 

Таким образом, в нагрузке получается удвоенное изменение тока, т. е. на несимметричном выходе мы имеем полный дифференциальный сигнал. Полезным является и то, что потенциал на выходе ниже, чем на входе. Это позволяет соединять выход ДУ непосредственно с последующими каскадами без дополнительных устройств смещения уровня.

Для увеличения входного сопротивления вместо транзисторовТ1 и Т2 применяют каскодные схемы ОК-ОК ((рис. !!!!!!в), МОП-1транзисторы или супербета транзисторы, а в качестве нагрузки - отражатель тока . При использовании МОП-транзисторов входные токи уменьшаются до уровня 10-9 А, а входное сопротивление достигает 1011...1013 OM. Недостатками ДУ с MOП транзисторами является сильная зависимость входных токов оттемпературы при изменении температуры на 100°С входные токивозрастают на два порядка), большое напряжение смещения (до30...50 мВ) и большой его температурный дрейф (до 40 мкB/°C).По этой причине в настоящее время отдают предпочтение ДУ с супербета транзисторами, которые имеют коэффициент передачи тока β=3000...5000 и позволяют снизить входные токи до десятков-единиц наноампер.

Контрольные вопросы

         1. Перечислите основные параметры электронных усилителей.

         2. Приведите классификацию электронных усилителей.

         3. При каких условиях нелинейные искажения увеличиваются?

         4. Сравните усилители с ОЭ, ОБ, ОК и с ОИ, ОЗ, ОС по коэффициентам усиления.

         5. Сравните усилители с ОЭ, ОБ, ОК по значениям RВХ и RВЫХ. Чем обусловлено их различие?

    6. Сравните частотные свойства каскадов с ОЭ, ОБ, ОК и с ОИ, ОЗ, ОС, объясните причины различия.

    7. Какой усилитель (ОЭ, ОБ, ОК) обладает наибольшим коэффициентом усиления?

    8. Какой усилитель (ОЭ, ОБ, ОК) обладает наибольшим  входным сопротивлением, наибольшим выходным сопротивлением?

    9. Какой усилитель (ОЭ, ОБ, ОК) обладает наибольшей температурной нестабильностью?

    10. Объясните назначение всех компонентов схем усилителей с ОЭ, ОБ, ОК, ОИ, ОС, 0З.

         11. Каковы основные способы задания режима транзистора в усилительных каскадах  ОЭ, ОБ, ОК?

12. Когда следует применять усилительные каскады, включенные по схеме с ОЭ, ОБ, ОК или с ОС, ОИ, ОЗ?

     13. Объясните влияние температуры на режим работы усилительных каскадов с ОЭ, ОБ, ОК.

14. Какие вы знаете способы температурной стабилизации режима работы усилительных каскадов?

         15. Как влияет ООС на амплитудно-частотную характеристику усилителя?

         16. Приведите схемы усилителей на биполярных и униполярных транзисторах с местными ООС по постоянному току и дайте их краткую характеристику.

17. Перечислите паразитные RC-цепочки в усилителях. Как они влияют на  их АЧХ и форму усиливаемого прямоугольного импульса?

Рекомендуем посмотреть лекцию "4 Общие понятия о подвижном составе".

         18. Какие элементы схем усилителей образуют интегрирующие и дифференцирующие цепи?

         19. За счет чего в каскодных схемах усилителя расширяется полоса пропускания?

20. Чем объясняется свойство дифференциальных усилителей подавлять сигналы помех?

21. Почему в дифференциальных усилителях применяют генераторы тока?

22. Объясните механизм действия ООС по току и по напряжению.

23. Объясните назначение и механизм действия внутрикаскадных и межкаскадных фильтров по питанию.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее