Экспертные системы
2.2. Экспертные системы
Экспертные системы как самостоятельное направление в искусственном интеллекте сформировалось в конце 1970-х гг. История ЭС началась с сообщения японского комитета по разработке ЭВМ пятого поколения, в котором основное внимание уделялось развитию «интеллектуальных способностей» компьютеров с тем, чтобы они могли оперировать не только данными, но и знаниями, как это делают специалисты (эксперты) при выработке умозаключений. Группа по экспертным системам при Комитете British Computer Society определила ЭС как «воплощение в ЭВМ компоненты опыта эксперта, основанной на знаниях, в такой форме, что машина может дать интеллектуальный совет или принять решение относительно обрабатываемой функции». Одним из важных свойств ЭС является способность объяснить ход своих рассуждений понятным для пользователя образом [5].
Область исследования ЭС называют «инженерией знаний». Этот термин был введен Е. Фейгенбаумом и в его трактовке означает «привнесение принципов и инструментария из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». Другими словами, ЭС применяются для решения неформализованных проблем, к которым относят задачи, обладающие одной (или несколькими) из следующих характеристик:
• задачи не могут быть представлены в числовой форме;
• исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;
• цели нельзя выразить с помощью четко определенной целевой функции;
• не существует однозначного алгоритма решения задачи;
• алгоритмическое решение существует, но его нельзя использовать по причине большой размерности пространства решений и ограничений на ресурсы (времени, памяти).
Обычно к ЭС относят системы, основанные на знании, т. е. системы, вычислительная возможность которых является в первую очередь следствием их наращиваемой базы знаний (БЗ) и только во вторую очередь определяется используемыми методами. Методы инженерии знаний (методы ЭС) в значительной степени инвариантны тому, в каких областях они могут применяться. Области применения ЭС весьма разнообразны: военные приложения, медицина, электроника, вычислительная техника, геология, математика, космос, сельское хозяйство, управление, финансы, юриспруденция и т. д. Среди этих областей лидируют бизнес, производство, медицина, проектирование и системы управления. Более критичны методы инженерии знаний к типу решаемых задач. В настоящее время ЭС используются при решении задач следующих типов: принятие решений в условиях неопределенности (неполноты), интерпретация символов и сигналов, предсказание, диагностика, конструирование, планирование, управление, контроль и др.
Рекомендуемые материалы
Назначение и особенности ЭС. Знания, которыми обладает специалист в какой-либо области (дисциплине), можно разделить на формализованные (точные) и неформализованные (неточные). Формализованные знания формулируются в книгах и руководствах в виде общих и строгих суждений (законов формул, моделей, алгоритмов и т. п.), отражающих универсальные знания. Неформализованные знания, как правило, не попадают в книги и руководства в связи с их конкретностью, субъективностью и приблизительностью. Знания этого рода являются результатом обобщения многолетнего опыта работы и интуиции специалистов. Они обычно представляют собой многообразие эмпирических (эвристических) приемов и правил.
В зависимости от того, какие знания преобладают в той или иной области (дисциплине), ее относят к формализованным (если преобладают точные знания) или к неформализованным (если преобладают неточные знания) описательным областям. Задачи, решаемые на основе точных знаний, называют формализованными, а задачи, решаемые с помощью неточных знаний, - неформализованными. Речь идет не о неформализуемых, а о неформализованных задачах, т. е. о задачах, которые, возможно, и формализуемы, но эта формализация пока неизвестна.
Как правило, неформализованные задачи обладают неполнотой, ошибочностью, неоднозначностью и (или) противоречивостью знаний (как данных, так и используемых правил преобразования).
Экспертные системы не отвергают и не заменяют традиционного подхода к программированию, они отличаются от традиционных программ тем, что ориентированны на решение неформализованных задач и обладают следующими особенностями:
алгоритм решений не известен заранее, а строится самой ЭС с помощью символических рассуждений, базирующихся на эвристических приемах;
ясность полученных решений, т. е. система «осознает» в терминах пользователя, как она получила решение;
способность анализа и объяснения своих действий и знаний;
способность приобретения новых знаний от пользователя-эксперта, не знающего программирования, и изменения в соответствии с ними своего поведения;
обеспечение «дружественного», как правило, естественно-языкового (ЕЯ) интерфейса с пользователем.
Главное отличие ЭС и систем искусственного интеллекта от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в качестве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.
Во многих случаях ЭС являются инструментом, усиливающим интеллектуальные способности эксперта. Кроме того, ЭС может выступать в роли:
• консультанта для неопытных или непрофессиональных пользователей;
• ассистента эксперта-человека в процессах анализа вариантов решений;
• партнера эксперта в процессе решения задач, требующих привлечения знаний из разных предметных областей.
Для классификации ЭС используются следующие признаки:
• способ формирования решения;
• способ учета временного признака;
• вид используемых данных и знаний;
• число используемых источников знаний.
По способу формирования решения ЭС можно разделить на анализирующие и синтезирующие. В системах первого типа осуществляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синтезируется из отдельных фрагментов знаний.
В зависимости от способа учета временного признака ЭС делят на статические и динамические. Статические ЭС предназначены для решения задач с неизменяемыми в процессе решения данными и знаниями, а динамические ЭС допускают такие изменения.
По видам используемых данных и знаний различают ЭС с детерминированными и неопределенными знаниями. Под неопределенностью знаний и данных понимаются их неполнота, ненадежность, нечеткость.
ЭС могут создаваться с использованием одного или нескольких источников знаний.
В соответствии с перечисленными признаками можно выделить четыре основных класса ЭС (рис. 2.2):
![]() |
Рис. 2.2. Основные классы ЭС
классифицирующие, доопределяющие, трансформирующие и мультиагентные.
Классифицирующие ЭС решают задачи распознавания ситуаций. Основным методом формирования решений в таких системах является дедуктивный логический вывод.
Доопределяющие ЭС используются для решения задач с не полностью определенными данными и знаниями. В таких ЭС возникают задачи интерпретации нечетких знаний и выбора альтернативных направлений поиска в пространстве возможных решений. В качестве методов обработки неопределенных знаний могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика [5].
Трансформирующие ЭС относятся к синтезирующим динамическим экспертным системам, в которых предполагается повторяющееся преобразование знаний в процессе решения задач. В ЭС данного класса используются различные способы обработки знаний:
• генерация и проверка гипотез;
• логика предположений и умолчаний (когда по неполным данным формируются представления об объектах определенного класса, которые впоследствии адаптируются к конкретным условиям изменяющихся ситуаций);
• использование метазнаний (более общих закономерностей) для устранения неопределенностей в ситуациях.
Рекомендуем посмотреть лекцию "Модель объект - свойство - отношение".
Мультиагентные системы — это динамические ЭС, основанные на интеграции нескольких разнородных источников знаний. Эти источники обмениваются между собой получаемыми результатами в ходе решения задач. Системы данного класса имеют следующие возможности:
• реализация альтернативных рассуждений на основе использования различных источников знаний и механизма устранения противоречий;
• распределенное решение проблем, декомпозируемых на параллельно решаемые подзадачи с самостоятельными источниками знаний;
• применение различных стратегий вывода заключений в зависимости от типа решаемой проблемы;
• обработка больших массивов информации из баз данных;
• использование математических моделей и внешних процедур для имитации развития ситуаций.