Популярные услуги

Теория Ленгмюра

2021-03-09СтудИзба

ЛЕКЦИЯ 11

«По некоторым версиям причиной болезни И. Ньютона и Наполеона Бонапарта явились адсорбция в одном случае паров ртути, которые были обнаружены в волосах великого ученого (до болезни Ньютон 18 лет работал с ртутью), а во втором – паров мышьяка (в обоях спальни Наполеона обнаружили арсенид мышьяка)»

А.Д. Зимон

Поглощение паров древесным углем было впервые описано К. Шееле в 1773 г и аббатом Ф. Фонтана в 1777 г. Первое систематическое изучение адсорбции было проведено Т. Сосюром, исследовавшим поглощение различных газов некоторыми адсорбентами. К настоящему времени известны многочисленные области практического применения адсорбции, среди которых важнейшими являются: очистка газов от примесей (например, очистка аммиака перед его контактным окислением, очистка воздуха в подводных лодках и противогазах); извлечение и рекуперация веществ (например, извлечение газолина из природного газа, рекуперация паров летучих растворителей в производстве полимерных пленок, волокон); гетерогенный катализ (например, реакция между оксидом углерода и водородом при синтезе метанола, протекающая при контакте с высокодисперсным кизельгуром или силикагелем, на которые нанесена смесь Co–TiO2–MgO); фракционирование и анализ многокомпонентных систем (адсорбционная хроматография).

«Классические» теории адсорбции были разработаны в начале XX в. Они рассматривают обратимые процессы, исходя из общей трактовки сил межмолекулярного взаимодействия и охватывают процессы физической адсорбции и обратимые хемосорбционные процессы.

В 1915 г И. Ленгмюр и М. Поляни одновременно и независимо друг от друга создали две совершенно разные теории.

Ленгмюр исходил из предположения, что адсорбция является химическим процессом, и адсорбированные молекулы на поверхности адсорбента располагаются в виде одного слоя атомов или молекул. Поляни считал, что адсорбция представляет собой физический процесс и что адсорбционная фаза состоит из многих слоев молекул. Обе теории были во многих отношениях плодотворны и обе имели определенные ограничения. Теория Поляни применима только к ван-дер-ваальсовой адсорбции, теория Ленгмюра, с известными ограничениями, применима как к химической, так и к физической адсорбции.

Известны три вывода уравнения Ленгмюра: кинетический, данный самим Ленгмюром, термодинамический, данный М. Фольмером, и статистический вывод Р. Фаулера. (Выведите уравнение Ленгмюра, приняв, как и он, что число активных центров на поверхности равно единице, а долю активных мест, связанных с адсорбированными молекулами, т. е. ту часть поверхности, которая занята молекулами адсорбата, обозначьте через Θ.)

Рекомендуемые материалы

Для обработки экспериментальных данных обычно используется линейная форма уравнения Ленгмюра:

В этом случае изотерма адсорбции, т. е. зависимость адсорбции от давления адсорбата представляется в виде прямой линии, и появляется возможность определить важнейшие адсорбционные константы (k и p). (Вы помните, какой физический смысл имеют эти величины?)

К сожалению, изотерма адсорбции не дает конкретных сведений о скорости адсорбции. Кинетика адсорбции является самостоятельной областью исследований. Экспериментальные данные свидетельствуют о том, что адсорбция газов и паров протекает чрезвычайно быстро. Например, противогазный уголь извлекает из воздуха, содержащего 7000 частиц хлорпикрина на миллион частиц смеси, 99,99 % этого вещества за 0,03 секунды.

Скорость адсорбции (как и любой другой гетерогенной реакции) пропорциональна числу возможных соударений молекул со свободной поверхностью. Каждая молекула задерживается на поверхности в течение короткого времени, затем в результате флуктуаций энергии молекулы отрываются от активного центра, уступая место новым. Отношение констант адсорбции и десорбции является постоянной величиной.

Опыт показывает, что уравнение изотермы адсорбции Ленгмюра

,

где p – равновесное парциальное давление газа или пара, сравнительно удовлетворительно дает количественную характеристику адсорбции при низких и высоких концентрациях поглощаемого вещества.

Адсорбция газов на твердой поверхности в области средних давлений может быть также описана полуэмпирическим уравнением Бедекера-Фрейндлиха:

где x – количество адсорбированного вещества; m – масса адсорбента; k и 1/n – константы; p – равновесное давление пара или газа в системе.

Несмотря на то, что уравнение Фрейндлиха широко применяется на практике, оно имеет определенные недостатки. Многочисленные исследования показали, что значения величины адсорбции, вычисляемые на основании этого уравнения, не соответствуют данным опыта в области малых и больших концентраций. Константы k и 1/n не имеют определенного физического смысла и являются исключительно эмпирическими.

Было установлено, что наряду с изотермами монослойной адсорбции, на практике часто встречаются изотермы, не имеющие второго участка, почти параллельного оси абсцисс и отвечающего насыщению адсорбента адсорбатом:

Для объяснения этого явления М. Поляни предложил теорию полимолекулярной адсорбции, называемую также потенциальной теорией Поляни.

Основные положения теории Ленгмюра

Основные положения теории Поляни

  1. Адсорбция является локализованной и вызывается силами межмолекулярного взаимодействия. Она представляет собой обратимый химический процесс.
  2. Адсорбция молекул адсорбата происходит на активных центрах, всегда присутствующих на поверхности адсорбата.
  3. Вследствие малого радиуса действия адсорбционных сил и способности их к насыщению каждый активный центр, адсорбируя одну молекулу адсорбата, становится неспособным к дальнейшей адсорбции.
  4. Адсорбированные молекулы удерживаются активными центрами в течение определенного времени, затем происходит десорбция, после чего активный центр вновь может адсорбировать молекулы адсорбата.
  5. Силы взаимодействия между адсорбированными молекулами отсутствуют.

1. Адсорбция обусловлена исключительно физическими силами взаимодействия.

2. На поверхности адсорбента нет активных центров, а адсорбционные силы действуют вблизи поверхности адсорбента и образуют около этой поверхности со стороны газовой фазы непрерывное силовое поле.

3. Адсорбционные силы действуют на расстояниях, бóльших, чем размеры отдельных молекул, и поэтому у поверхности адсорбента образуется адсорбционный объем, который при адсорбции заполняется молекулами адсорбата.

4. Действие адсорбционных сил по мере удаления от поверхности уменьшается и на некотором расстоянии становится равным нулю.

5. Притяжение данной молекулы поверхностью адсорбента не зависит от наличия в адсорбционном пространстве других молекул, вследствие чего возможна полимолекулярная адсорбция.

6. Адсорбционные силы не зависят от температуры и поэтому адсорбционный объем при изменении температуры не изменяется.

По теории Ленгмюра молекулы адсорбата, притянутые к отдельным активным точкам, между собой не взаимодействуют. Однако при накоплении в адсорбционном слое молекул веществ с большой молекулярной массой, между ними могут возникнуть значительные силы сцепления. В этом случае уравнение Ленгмюра дает неверные результаты. В ряде случаев, в частности при применении пористых адсорбентов, таких, как уголь, силикагель и др., формула Фрейндлиха дает лучшие результаты, чем уравнение Ленгмюра.

В соответствии с теорией Поляни для каждой пары адсорбент-адсорбат характеристическая кривая, т. е. зависимость адсорбционного потенциала ε от объема V, заключенного между поверхностью, соответствующей данному потенциалу, и поверхностью адсорбента, устанавливается по экспериментально определяемой изотерме адсорбции. Эта зависимость имеет вид:

где Vм – молярный объем газа; ps – равновесное давление в газовой фазе вне адсорбционного слоя; p – давление насыщенного пара в области поверхностного слоя.

(Дайте определение ε как работы!)

Характеристические кривые инвариантны по температуре: . Указанное свойство характеристической кривой имеет огромное практическое значение, так как позволяет по одной экспериментальной изотерме адсорбции построить через кривую ε–V, семейство изотерм для любых заданных значений по схеме:

a1 V a2,

p1 ε p2.

(, где ρ – плотность вещества в жидком состоянии)

Для другого адсорбата изотерму можно вычислить по уже найденной характеристической кривой.

Адсорбционный потенциал для данного адсорбента ε1 изменяется одинаково для всех адсорбируемых веществ. Поэтому при равных заполнениях адсорбционного слоя отношение адсорбционных потенциалов двух адсорбатов является постоянной величиной:

Кривые с постоянным отношением ординат называются аффинными (от лат. affinus – родственный, соответственный). Поэтому β называют коэффициентом аффинности.

В целом, теория Поляни, несмотря на свою ограниченность (отсутствие аналитического выражения для изотермы), отнюдь не потеряла практического значения и до настоящего времени остается теорией, пригодной для описания адсорбции на адсорбентах с резкой энергетической неоднородностью, например, на активированных углях.

Делались попытки обобщить теории Ленгмюра и Поляни. Одной из наиболее удачных попыток является так называемая теория БЭТ (теория Брунауэра-Эммета-Теллера, 1935-1940 гг).

Основные положения теории БЭТ:

    1. На поверхности адсорбента имеется определенное число активных центров.
    2. Взаимодействием адсорбированных молекул в первом и последующих слоях пренебрегают.
    3. Каждая молекула первого слоя может стать активным центром для адсорбции  образования последующих слоев.
    4. Предполагается, что во втором и последующих слоях все молекулы имеют такую же сумму статистических состояний, как и жидкости.

Уравнение изотермы адсорбции в линейном виде (Запишите его!) позволяет графически определить параметры c и Γ. (Вспомните, c – это концентрация?)

От адсорбции газов и паров существенно отличается адсорбция из растворов на твердой поверхности. Так при адсорбции газов поверхность адсорбента с ростом давления постепенно заполняется адсорбатом в соответствии с изотермой адсорбции. При адсорбции из жидких растворов поверхность адсорбента всегда полностью занята молекулами растворителя и растворенного вещества. Растворенное вещество может адсорбироваться на адсорбенте, только вытесняя молекулы растворителя с его поверхности.

Для характеристики равновесной адсорбции из раствора используют какую-либо изотерму адсорбции.

Для достаточно разбавленных растворов адсорбция хорошо описывается уравнением Ленгмюра или Бедекера-Фрейндлиха, которое для адсорбции из растворов имеет вид:

.

Для экспериментального исследования адсорбции из растворов используют другие уравнения, например:

где Гэкс – количество вещества, адсорбированного 1 г адсорбента, моль/г; co и c – начальная и равновесная концентрации адсорбата, моль/дм3; V – объем раствора, из которого происходит адсорбция, дм3; m – масса адсорбента.

Существенную роль при адсорбции из жидких растворов играет природа растворителя и адсорбента. Общее правило: чем лучше данный растворитель смачивает адсорбент, тем меньше адсорбция растворенного вещества и наоборот. Адсорбция растворенного вещества на твердой поверхности будет тем больше, чем больше разность полярностей между растворителем и адсорбентом, и наоборот. Таким образом, адсорбция идет в сторону уравнивания полярностей и тем сильнее, чем больше разность полярностей (правило уравнивания полярностей Ребиндера).

Адсорбция электролитов из водных растворов на твердых адсорбентах является еще более сложным процессом, чем молекулярная адсорбция. На адсорбции ионов существенно сказывается природа адсорбента. Так, ионы, способные поляризоваться, адсорбируются обычно на поверхностях, состоящих из полярных молекул или ионов. Процесс адсорбции ионов усложняется еще и тем, что он, как правило, необратим.

Радиус ионов сильно влияет на их способность адсорбироваться. Так, из ионов одинаковой валентности лучше адсорбируются ионы, имеющие больший радиус, т. к., во-первых, такие ионы сильнее поляризуются, а во-вторых, меньше гидратируются. Среди ионов, имеющих различные заряды, как правило, лучше адсорбируются ионы с бóльшим зарядом. Ряды ионов, составленные в порядке уменьшения их способности связывать воду, называются лиотропными рядами (рядами Гедройца или рядами Гофмейстера).

Несомненный интерес для коллоидной химии представляет адсорбция ионов поверхностью кристалла. В этом случае адсорбцию можно рассматривать как кристаллизацию, т. е. достройку кристаллической решетки способным адсорбироваться ионом (Вспомните правило Панета-Фаянса о способности ионов достраивать кристаллическую решетку, которое Вы изучали, когда рассматривали формирование мицелл в золях!) При этом на кристалле образуется двойной электрический слой (ДЭС).

Если же на поверхности адсорбента уже имеется ДЭС, то при контакте этого адсорбента с электролитом почти всегда в той или иной степени происходит ионообменная адсорбция. Подвижные противоионы электрического слоя способны обмениваться на другие ионы того же знака, находящиеся в растворе.

Первые сообщения об ионообменной адсорбции были сделаны Томпсоном и Уэсли в 1850 г. Они установили, что между водными растворами солей и почвами происходит обмен ионами. Вещества, способные к ионному обмену и используемые для адсорбции ионов, получили название ионообменников или ионитов.

Иониты имеют каркасную структуру, «сшитую» ковалентными связями. Заряд каркаса скомпенсирован противоположным зарядом подвижных противоионов, находящихся в адсорбционной и диффузионной частях ДЭС.

Иониты делятся на органические и неорганические (по составу), на природные и синтетические (по происхождению), на катиониты, аниониты и амфолиты (по заряду обмениваемых ионов; последние способны обменивать как катионы, так и анионы).

Под емкостью ионита понимают его способность обменивать ионы, которая определяется числом функциональных групп и теоретически является величиной постоянной, а практически – зависит от ряда условий.

Статическая обменная емкость (СОЕ) – полная емкость, характеризующая общее число обменных групп (ммоль экв на 1 г воздушно сухого ионита или на 1 см3 набухшего).

Динамическая обменная емкость (ДОЕ) – определяется той частью ионогенных групп, которая участвует в обмене в технологических условиях, например, в ионообменной колонке при движении раствора относительно ионита. ДОЕ всегда меньше СОЕ, она зависит от скорости движения раствора, размера колонки и др.

Вопросы и задания для самоконтроля знаний по материалу 11-й лекции

1 Сформулируйте основные положения теории Ленгмюра и запишите уравнение изотермы адсорбции.

2 Проанализируйте уравнение при а) c → ∞; б) c → 0; в) Г=Г/2. Чему равна константа k?

3 Как Вы понимаете термины «мономолекулярная адсорбция» и «полимолекулярная адсорбция»?

4 Входит ли в теорию Поляни представления о локализованной адсорбции?

5 Что такое адсорбционный объем, адсорбционный потенциал, характеристическая кривая?

6 Охарактеризуйте практические возможности теории Поляни, исходя из того, что Вы имеете изотерму адсорбции вещества на адсорбенте. Какие зависимости можно получить, пользуясь этой теорией и экспериментальной изотермой адсорбции?

7 Каковы основные положения теории БЭТ и ее практическое значение? Какую важнейшую характеристику адсорбента получают, пользуясь этой теорией?

8 В чем заключаются особенности адсорбции из растворов?

9 Объясните, почему при высоких концентрация растворенного вещества удельная адсорбция  часто становится отрицательной величиной, т. е. кривая зависимости удельной адсорбции от концентрации опускается ниже оси абсцисс.

Рекомендация для Вас - РАБЛЕ Франсуа.

10 Будет ли отличаться ориентация молекул ПАВ при адсорбции из водных растворов на угле и силикагеле?

11 Какое правило установил П. Ребиндер для адсорбции из растворов?

12 К. Гедройц установил, что носителем обменной адсорбции в почве является почвенный поглощающий комплекс, который представляет собой высокодисперсную смесь нерастворимых в воде алюмосиликатных, органических и органоминеральных соединений. В обмене участвуют только катионы. Какой из перечисленных ионов вытесняет больше бария из образца черноземной почвы: Mg2+, Li+, K+, Rb+, Cu2+? Расположите эти ионы в порядке увеличения вытеснительной способности.

Знакомимся с основными понятиями физической химии (для курсантов военного факультета)

Повторяем курс физической химии (для студентов химического факультета)

1. ...............


Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5166
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее