Теорема Бернулли
Теорема Бернулли.
Рассмотрим стационарное баротропное течение под действием массовых сил, т.е. можно записать: - умножим уравнение скалярно на вектор скорости, тогда последний член равен нулю, т.к. идет скалярное перемножение перпендикулярных векторов.
- единичный вектор в направлении вектора скорости. Вектор скорости направлен по касательной к линии тока или к траектории, т.к. течение стационарное, следовательно:
- производная по направлению.
- выражение отражает теорему Бернулли: при стационарном баротропном течении идеальной жидкости под действием потенциальных массовых сил сумма кинетической энергии единицы объема, функции давления приведенного к единице массы потенциала массовых сил сохраняет постоянное значение вдоль любой линии тока.
Если бы скалярно умножили исходное уравнение на вектор угловой скорости, то получили бы аналогичный результат вдоль вихревой линии.
Если течение потенциальное, то и сразу же получается:
и
во всем потоке, т.е. трехчлен Бернулли сохраняет постоянное значение во всей области потенциального потока.
Рекомендуемые материалы
Рассмотрим потенциальное течение несжимаемой жидкости под действием сил тяжести. Т.к. жидкость несжимаема то :
Ещё посмотрите лекцию "11 - Характерные особенности рельефа" по этой теме.
У сил тяжести потенциал равен: , z – координата.
(1),
- удельный вес
Все эти составляющие имеют размерность давления и называются напорами: - скоростной или динамический напор; р – пьезометрический напор;
- геометрический напор; ро – полный напор
При стационарном течении идеальной несжимаемой жидкости полный напор, равный сумме , сохраняет постоянное значение вдоль любой линии тока, а при потенциальном течении во всей области потока.
В задачах, в которых можно пренебречь влиянием геометрического напора, уравнение Бернулли упрощается и приобретает вид:
Уравнение (1) разделим на , тогда:
- все компоненты измеряются в метрах и называются высотами:
- скоростная высота,
- пьезометрическая высота, z – нивелирная высота, Н – гидравлическая высота. При стационарном движении идеальной несжимаемой жидкости высота
, сохраняет постоянное значение вдоль любой линии тока (или вихревой линии), а при потенциальном течении во всем токе.