Популярные услуги

Силы давления жидкости

2021-03-09СтудИзба

2. Силы давления жидкости на твердые поверхности

В общем случае воздействие жидкости на твердую поверхность S сводится к сумме элементарных сил , действующих на малых площадках dS, составляющих эту поверхность (рис. 5).

Если  – единичный вектор нормали к поверхности S, внешней к объему жидкости, а – давление на площадке dS, то сила .

Суммируя систему сил , получаем выражение для главного вектора

,                                                                      (46)

называемого силой давления жидкости на поверхность S, и выражение для главного момента

,                                                                (47)

где  – радиус-вектор площадки  относительно центра приведения системы сил.

Рассмотрим несколько частных случаев.

Рекомендуемые материалы

2.1. Равномерное давление на плоскую стенку (р=const., п=const).

В этом случае суммируемые векторы  составляют систему параллельных и одинаково направленных сил. Такая система всегда может быть сведена только к силе давления . При р = const и n = const из выражения (46) получаем

.               (48)

Линия действия силы  проходит через центр тяжести площади S.

Равномерное давление может создаваться покоящимся газом, так как благодаря малой его плотности можно  пренебречь  действием массовых сил и считать давление одинаковым во      всех точках газа.

Равномерное давление может создаваться и капельной жидкостью, например, при ее воздействии на горизонтальные площадки, в случае абсолютного покоя или движения сосуда с ускорением вверх или вниз.

Величина силы  при равномерном распределении давления не зависит от ориентации плоской стенки S в пространстве и вычисляется по формуле .

Например, для схемы на рис. 6 давление на дне , а сила . Заметим, что сила давления на дно не зависит от формы сосуда (гидростатический парадокс).

2.2. Сила равномерного давления на криволинейную стенку (, )

В этом случае элементарные силы  имеют разные направления. Главный вектор  системы вычисляется через свои проекции. Чтобы найти его проекцию  на ось х , проектируем на эту ось векторы  (рис.7).


,

где  – единичный вектор оси x; – проекция площадки dS на плоскость, нормальную оси х. Искомая величина  при

.                                 (49)

Линия действия силы  проходит через центр тяжести площади проекции . Таким образом, величина проекции на направлении оси x силы равномерного давления р на криволинейную поверхность S равна произведению давления и площади проекции Sx этой криволинейной поверхности на плоскость. нормальной оси х. Если такие проекции на три взаимно ортогональные оси пересекаются в одной точке, то система сил  может быть сведена только к силе давления, величина которой

,                                                        (50)

а направление определяется направляющими косинусами

; ; .                        (51)

Если составляющие не пересекаются в одной точке, система сводится к силе и моменту.

2.3. Сила неравномерного давления на плоскую стенку (, ).

Систему элементарных сил , одинаковых по направлению, но различных по величине, можно свести в данном случае к одной силе давления

,                                                                      (52)

где S площадь стенки.

Величина этой силы

                                                             (53)

зависит от закона распределения давления Р по площади S. При воздействии на S капельной жидкости эти законы могут быть различными. Их конкретный вид зависит от ориентации площадки и действующих на жидкость массовых сил при абсолютном и относительном покое.

Вычислим силу  для плоской стенки, наклоненной к горизонту под углом a и подверженной  воздействию  тяжелой жидкости, находящейся в состоянии абсолютного покоя (рис. 8).

Определим результирующую силу избыточных давлений , которые создаются внешним избыточным  и весовым  давлениями. Заменим внешнее давление  воздействием эквивалентного слоя жидкости, толщина, которого  определяется высотой поднятия жидкости в пьезометре . Таким образом, внешнее давление из рассмотрения исключается, и свободная поверхность СП заменяется пьезометрической плоскостью ПП. Продолжим плоскость стенки до пересечения с пьезометрической плоскостью. Вдоль линии их пересечения направим ось х, а ось у расположим в плоскости стенки. Затем для наглядности повернем плоскость стенки на 90° вокруг оси у и совместим стенку с плоскостью чертежа.

Величину силы вычислим по формуле (53):

.

В рассматриваемом случае (см. рис. 8) давление

,                                                     (54)

что при подстановке в формулу (53) дает

.

Интеграл  представляет собой статический момент площади S относительно оси Ох, равный, как известно, произведению S на координату  ее центра тяжести.

Поэтому

.                (55)

Формула (55) может быть записана в двух видах

,                                                                          (56)

где  – избыточное давление в центре тяжести площади S, или

.                                                           (57)

Согласно (56) величина силы избыточного давления покоящейся жидкости на плоскую стенку равна произведению площади стенки на избыточное давление в ее центре тяжести.

Вектор силы  направлен по нормали к стенке S:

,

а линия действия этой силы пересекает стенку в некоторой точке D, называемой центром давления. Для отыскания координат этой точки () используем теорему о равенстве момента равнодействующей и суммы моментов составляющих, которая в данном случае выражается уравнением

,                                                         (58)

где  и  – радиус-векторы соответственно центра давления D и произвольной точки (ху) площади S.

По правилам составления проекций векторного произведения находим

; .

Учитывая выражения (54) и (55), получим

                                                                     (59)

Более удобные выражения для  и  получим, если воспользуемся теоремой о соотношении между моментами второй степени, взятыми относительно параллельных осей

; ,

где оси координат, проходящие через центр тяжести С площадки S параллельно осям х и у;  и  – координаты центра тяжести С в системе xу;  – центробежный момент площади S относительно осей х и у ;  момент инерции площади S относительно оси х (см. рис. 8). Окончательно,

; .                                     (60)

Вторая из формул (60) показывает, что центр давления расположен ниже центра тяжести на величину .

Возвращаясь к формуле (57), заметим, что силу давления в рассматриваемом случае можно получить, складывая независимо вычисленные две силы:  и , где – сила внешнего избыточного давления, – сила весового давления. При таком способе определения силы  следует помнить, что линии действия сил  и  не совпадают, и центр давления D определяется линией действия суммарной силы .

2.4. Неравномерное давление на криволинейную твердую поверхность (, ) может быть создано тяжелой жидкостью при абсолютном или относительном покое. Элементарные силы  составляют в этом случае самую общую систему, которая должна сводиться к силе давления  (46) и моменту  (47). Однако существуют частные случаи,, когда система сводится к одной силе давления , например, если линии действия элементарных сил  пересекаются в одной точке (сферическая стенка).

Рассмотрим криволинейную поверхность S, находящуюся под воздействием внешнего избыточного давления  и весового давления  (рис.9). Как было показано в предыдущем пункте, задачу отыскания силы давления можно расчленить, определяя раздельно силы весового и внешнего давлений. Эту же задачу можно свести к задаче об определении только весового давления, заменив внешнее давление действием эквивалентного слоя жидкости.



Силу весового давления  определим по ее проекциям. Горизонтальная проекция

,

где  – проекция площадки dS на вертикальную плоскость, нормальную к оси х. Последний интеграл представляет  собой  статический  момент площади  относительно оси y. Следовательно,

,                                                                   (61)

где – координата центра тяжести площади .

Аналогично получим

,                                                                   (62)

где – площадь проекции криволинейной поверхности на плоскость, нормальную оси y.

Таким образом, чтобы вычислить горизонтальную проекцию  силы весового давления на криволинейную поверхность, следует площадь проекции  этой поверхности на плоскость, нормальную к рассматриваемой горизонтальной оси, умножить на давление в центре тяжести площади .

Проекция силы весового давления на вертикальную ось определится соотношением

,                                    (63)

где – проекция на плоскость х0у поверхности S.

Последний интеграл представляет собой объем тела , ограниченного поверхностью S, цилиндрической боковой поверхностью  с вертикальными образующими и проекцией  криволинейной поверхности S на свободную поверхность жидкости. Это тело называется телом давления, а величина  есть вес жидкости в его объеме.


Таким образом, вертикальная проекция силы весового давления на криволинейную поверхность равна весу жидкости в объеме тела давления.

Величина  силы  определится формулой

,                                                         (64)

а направление линии ее действия – направляющими косинусами

; ; .                    (65)

Если ,  и  пересекаются в одной точке, то система сводится к силе давления, проходящей через эту точку.

В лекции "Лекция №8 Правовые и организационные основы безопасности" также много полезной информации.

Возможны два случая расположения криволинейной поверхности (рис. 10 а и б) под уровнем жидкости. В первом случае жидкость расположена над твердой поверхностью; тело давления заполнено жидкостью и считается положительным, а вертикальная составляющая силы направлена вниз. Во втором случае тело давления не заполнено жидкостью и считается отрицательным; вертикальная сила давления направлена вверх.

Если криволинейная поверхность S замкнута и полностью погружена под уровень абсолютно покоящейся жидкости (рис. 11), то воздействие жидкости сводится к одной вертикальной силе. Действительно, для любой горизонтальной оси существуют две противоположно направленные и равные по величине силы, действующие на тело; поэтому результирующая горизонтальных сил равна нулю. Чтобы найти вертикальную силу, проектируем S на свободную поверхность жидкости. Проектирующие вертикали отметят на поверхности тела замкнутую линию l, которая делит поверхность на две части  и . Для верхней части  тело давления положительно и соответствующая ему сила направлена вертикально вниз, а для нижней  – тело давления отрицательно и сила направлена вверх. Обозначив объемы этих тел давления соответственно через  и , найдем величину результирующей вертикальной силы А:

,                                                 (66)

где – объем тела.

Таким образом, сила давления покоящейся жидкости на погруженное в нее тело направлена вертикально вверх и равна весу жидкости в объеме тела. Этот результат составляет содержание закона Архимеда: сила А называется архимедовой или гидростатической подъемной силой. Если G – вес тела, то его плавучесть определяется соотношением сил А и G. При  тело тонет, при  – всплывает, при G = А – плавает в состоянии безразличного равновесия. Следует иметь в виду, что линии действия сил G и А могут не совпадать, так как линия действия веса G проходит через центр тяжести тела, а линия действия архимедовой силы А – через центр его объема. При неравномерном распределении плотности тела может появиться момент, способствующий опрокидыванию тела.

В заключение отметим, что сила давления жидкости по криволинейной поверхности в случаях относительного покоя может быть определена общим способом суммирования элементарных сил давления, применительно к заданной форме поверхности и условиям относительного покоя.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее