Популярные услуги

Главная » Лекции » Физика » Радиоастрономия » Радиолокация тел Солнечной системы

Радиолокация тел Солнечной системы

2021-03-09СтудИзба

4.3. Радиолокация тел Солнечной системы

Радиолокационные исследования планет и других тел Солнечной системы очень эффективны и информативны. Это один из немногих случаев в астрономии, когда удается исследовать объект, оказывая на него активное воздействие и не ограничиваясь пассивным восприятием поступающего от него излучения. Радиолокация обеспечивает высокую точность измерения расстояний и скоростей движения в Солнечной системе, не достижимую другими методами.

Основные формулы радиолокационной астрономии. Метод состоит в следующем. Антенна излучает сигнал, генерируемый мощным передатчиком, в направлении планеты. Сигнал достигает поверхности планеты, рассеивается ею, и некоторая часть его отражается в направлении Земли. Мощность принятого на Земле сигнала, отраженного от планеты на расстоянии d:

                            (4.6)

W – мощность передатчика,

Aeff – эффективная площадь антенны,

l –длина волны,

величина  – усиление антенны, показывает, во сколько раз мощность сигнала, излучаемого данной антенной с эффективной площадью Aeff в максимуме диаграммы направленности, больше мощности сигнала от изотропно излучающей антенны;

s – эффективная поверхность отражающего тела (планеты),

Рекомендуемые материалы

x – коэффициент отражения радиоволн ("радиоальбедо" планеты; считается, что планета отражает радиоволны изотропно),  n – показатель преломления, n2 = e; для Луны x = 0.06–0.07.

Мощность шумов приемника

                                           (4.7)

Tш – шумовая температура приемной системы, Dn – полоса частот, t – время накопления сигнала,  – радиометрический выигрыш.

Отношение сигнал/шум на выходе приемника радиолокатора

                                        (4.8)

ARECI~IE

Радиотелескопы, используемые для радиолокации планет: Аресибо (вверху), Голдстоун.

Предполагается, что передача зондирующего сигнала и прием отраженного сигнала осуществляются одной и той же антенной. Такой метод радиолокации называется моностатическим. Применяется и бистатический метод, в котором передача и прием осуществляются разными антеннами. В этом случае в формуле вместо Aeff2 нужно подставить произведение Aeff1×Aeff2.

По характеру излучаемого сигнала различают импульсную локацию и локацию непрерывным сигналом.

Основные антенны, используемые для радиолокации планет:

Евпатория, Крым, диаметр 70 м, l = 39 см;

Аресибо, Пуэрто Рико, диаметр 305 м, l = 12.6 см;

Голдстоун, Калифорния, диаметр 64 м, l = 3.5 и 12.6 см, в бистатическом режиме прием осуществляется на системе апертурного синтеза VLA.

Рис. 4.4. Схема отражения сигнала от поверхности планеты

Структура сигнала, отраженного от планеты. Пусть излучается непрерывный монохроматический сигнал. При отражении от вращающейся планеты спектр сигнала расширится вследствие эффекта Доплера максимально до величины , где n – частота излучаемого сигнала, v – линейная скорость вращения планеты на экваторе. Множитель 4 возникает из-за того, что полный диапазон лучевых скоростей на экваторе планеты составляет 2v и, кроме того, точки поверхности планеты на экваторе вблизи лимба воспринимают частоту сигнала n уже смещенной на величину , соответственно, переизлучают ее смещенной. Земной наблюдатель видит дополнительное смещение еще на . Зона равных лучевых скоростей на диске планеты имеет вид вертикальной полоски (рис. 4.4), ей соответствует узкая полоса частот в уширенном спектре отраженного сигнала. Помимо уширения, спектр сигнала сдвинется на величину , где v0 – скорость движения планеты как целого относительно Земли.

Если локация осуществляется очень короткими импульсами, отраженные импульсы оказываются растянутыми по времени, так как волны, отраженные от разных частей планеты, приходят на Землю не одновременно. Первым поступит сигнал от подрадарной точки (то есть, ближайшей к Земле точки поверхности планеты). Далее в каждый момент времени сигнал будет поступать от кольца на видимом диске планеты, радиус кольца увеличивается со временем. Максимальное увеличение длительности импульса (для точек на лимбе планеты) Dt = 2R/c, где R – радиус планеты.

Реально величины уширения спектра Dn и растягивания импульса Dt оказываются меньше, чем это дают вышеприведенные формулы. На практике Dn и Dt определяются отражающими свойствами поверхности планеты, прежде всего ее "шероховатостью". Сигнал, отраженный от гладкой поверхности, придет в основном из области вблизи подрадарной точки, Dn и Dt будут невелики. Если же на поверхности присутствуют неоднородности с углами наклона склонов до i, то можно обнаружить сигналы от области планеты на центральных углах относительно направления на подрадарную точку, не превышающих i. Отраженный сигнал от лимба может быть получен только при наличии там отвесных склонов. Важную роль могут сыграть локальные неоднородности коэффициента отражения. На Меркурии и Марсе отраженные сигналы были обнаружены от приполярных областей благодаря наличию подпочвенных включений льда с диэлектрической проницаемостью, резко отличной от проницаемости окружающего грунта (см. далее).

Луна. Первый внеземной объект, для которого успешно проведена радиолокация еще в 1946 г. Баем в Венгрии. С тех пор получены подробные карты коэффициента отражения поверхности Луны в широком диапазоне, от 8 мм до 20 м. Линейное разрешение карт до 1 км. Наиболее интересный результат по радиолокации Луны получен при помощи КА – искусственного спутника Луны Clementine, выведенного на полярную орбиту. Локация проводилась бистатическим методом: радиоволны излучались передатчиком на спутнике, отражались от поверхности Луны и принимались на Земле антенной в Голдстоуне. В области южного полюса Луны найдены особенности коэффициента отражения. Вероятное объяснение – наличие в этой области Луны (так же, как на Марсе и Меркурии) подпочвенного льда общим объемом до 1.8 км3 [Спудис П.Д. и др., Астрон. вестник, 1998, 32, 17].

Меркурий. Радиолокация проводилась с 1962 г. (ll = 3.8, 12, 43 и 70 см). По характеру отраженных сигналов установлено, что грунт и рельеф напоминают лунный, перепад высот до 7 км. Найдено, что время оборота Меркурия вокруг оси 59 суток, а не 88 суток, как считалось ранее. Наиболее интересные результаты получены в 1991 г. Сигнал на частоте 2.4 ГГц излучался передатчиком в Голдстоуне, а принимался на VLA и в Аресибо. Пространственное разрешение на поверхности Меркурия составляло 15 км. Неожиданно был обнаружен отраженный сигнал от приполярной области планеты. Данные интерпретируются наличием неоднородностей показателя преломления на небольшой глубине под поверхностью. На дне крупных кратеров вблизи полюсов Меркурия, куда не заглядывает Солнце, вероятно, присутствуют подпочвенные включения льда размером до нескольких метров. В то же время, благодаря значительному наклону плоскости орбиты Меркурия (7°), земной наблюдатель имеет возможность в некоторые периоды времени видеть дно полярных кратеров. Лед на дне кратеров мог быть принесен крупными кометными ядрами, выпавшими на поверхность Меркурия [Nature, 1994, 369, 182; Icarus, 1999, 137, 197 и 141, 194].

Венера. Первый эксперимент по радиолокации Венеры был выполнен в апреле 1961 г. в СССР (антенна дальней космической связи в Крыму, l = 39 см) и почти одновременно в США и Англии. Были получены первые оценки коэффициента отражения поверхности Венеры: x = 11–16%.

Радиолокация Венеры позволила найти период вращения планеты, 243.04±0.03 суток, вращение обратное (таким образом, солнечные сутки на Венере равны 117 земным суткам). Угол наклона оси вращения к плоскости орбиты менее 5°. Уточнено значение астрономической единицы: 149 597 868 ± 0.7 км.

В 1969 г. на антенне в Хейстеке, США (D =36.6 м, l =3.84 см) получена первая карта распределения x по поверхности планеты. Более подробные карты с разрешением 50´50 км2 получены в 1969–1970 гг. в Голдстоуне. Эти карты позволили выявить крупномасштабные материковые образования на Венере. Исследования отдельных областей Венеры с разрешением 10´10 км2 проводились в Голдстоуне с 1972 г. Были найдены кратеры диаметром от 35 до 150 км.

Исследования рельефа Венеры, проведенные в СССР в 1972–1977 гг., показали, что в зоне широт ±10° относительно экватора перепады высот до 2 км, имеются равнины протяженностью до 1000 км и отдельные хребты. Диэлектрическая проницаемость поверхности e от 2.7 (песок) до 6.6 (твердый скальный грунт). В октябре 1975 г. при помощи спускаемых аппаратов КА Венера-9 и 10 были получены первые панорамы поверхности Венеры.

В 1979–1980 гг. на орбите вокруг Венеры работал американский спутник Пионер-Венера, имевший на борту радиовысотометр с антенной диаметром 38 см. С его помощью был проведен первый эксперимент по радиолокации Венеры с близкого расстояния. Разрешение составляло 100–150 км, а точность измерения дальности достигала 100–200 м. Составлена топографическая карта 93% поверхности Венеры от 60° ю.ш. до 75° с.ш. Определен средний радиус планеты, равный 6051.5 км; 27% поверхности занято низменностями, найдены два крупных образования, названные Альфа и Бета.

С октября 1983 г. в течение четырех месяцев на орбите вокруг Венеры работали советские аппараты Венера-15 и 16. Орбиты были близки к полярным, большая полуось ~79 тыс. км. Наблюдениями покрыта северная полярная область до 30°. Разрешение было около 1 км. В отдельных полосах применялся стереоскопический метод сравнения карт, полученных на двух последовательных оборотах спутника.

В июне 1985 г. в рамках программы Венера–Галлей был осуществлен пролет вблизи Венеры космических аппаратов Вега 1 и Вега 2, сброшены спускаемые аппараты, также проведена съемка поверхности. Далее в марте 1986 г. состоялась встреча с кометой Галлея.

Рис. 4.5. Радиолокационная карта рельефа Венеры.

В августе 1990 г. на полярную орбиту вокруг Венеры выведен американский космический аппарат Магеллан, проработавший до сентября 1992 г. с радиолокатором бокового обзора. Высота его орбиты составила 300 км, период обращения 3 ч 15 мин, разрешение локатора — 120 м. Наблюдениями дважды покрыта вся поверхность планеты. Построены объемные карты Венеры.

Основные результаты даны на рис. 4.5. Наиболее крупная возвышенность, Земля Иштар, по размерам приближается к Австралии. Горы Максвелла высотой 11.5 км на 12–13 км выше самых глубоких низменностей на Венере. По своим размерам массив Максвелла вдвое больше Тибета. Его склоны имеют наклон до 6°. На вершине – вулканический кольцевой кратер Æ~100 км (кратер Клеопатры). Коэффициент отражения в горных областях ~0.5, на равнинах ~0.15. Альфа – плато размером >1000 км и высотой до 2.5 км. К юго-западу от Альфы находится кратер Лизе Мейтнер (Æ~300 км, глубина 1 км), вероятно, ударного происхождения; к северо-востоку от Альфы – вулканическая возвышенность Сапфо (Æ~300 км). Область Бета (Æ~800 км) напоминает земные щитовые вулканы с застывшими лавовыми потоками.

Радиолокационное изображение Венеры по данным КА "Магеллан"

Марс. Первые радиолокационные наблюдения выполнены в 1963 г. Перепад высот превышает 14 км. Углы наклона неоднородностей невелики. С уменьшением длины волны диаграмма направленности отражения расширяется, так как на поверхности планеты много мелких образований. В 1991 г. в эксперименте Голдстоун–VLA (l = 3.5 см) выявлены новые структурные особенности коэффициента отражения. В области Tharsis найдена огромная деталь Stealth, практически не отражающая радиоволны (вероятно, мелко раздробленная пыль или пепел с плотностью ~0.5 г/см3). Получен сильный сигнал, отраженный от южной полярной шапки. Как и в случае Меркурия, это можно объяснить наличием льда CO2 или H2O с небольшой примесью пыли на глубине до 2–5 м [Science, 1991, 253, 1508].

Юпитер. Попытка радиолокации была выполнена в 1964 г. на волнах l = 12 и 70 см. Отраженный сигнал не был обнаружен. Правда, в первой попытке было получено радиоэхо, причем эффективная площадь отражения s составляла ~60% от площади видимого диска планеты; вероятно, это было обусловлено инструментальными эффектами и впоследствии не подтвердилось. Отсутствие радиоэхо от Юпитера связано с большим поглощением радиоволн в его атмосфере.

Спутники Юпитера. Наблюдения выполнены в 1975–1979 гг. в Аресибо (l = 12.6 см). Спутники имеют резко отличающиеся коэффициенты отражения x: Европа 0.44–0.66, Ганимед 0.20–0.40, Каллисто 0.10. Поверхность этих спутников может состоять из глыб льда Æ ³ l, впаянных в поверхностный реголит, а вариации x объясняются различными размерами глыб [Icarus, 1980, 44, 431].

Сатурн. Локация проводилась в 1973 г. на волне l = 12.5 см. Отраженный сигнал получен, но только от колец планеты, seff == 0.6sгеом. Высокая отражательная способность колец может быть смоделирована наличием в кольцах кусков льда размером > 8 см (возможно, до 1 м).

Титан. Предполагалось, что этот спутник Сатурна покрыт океаном из жидких углеводородов с низким значением e; поэтому коэффициент отражения x должен быть мал, и нельзя ожидать радиоэха от Титана. Однако в эксперименте Голдстоун–VLA (l = = 3.5 см) отраженный сигнал был зарегистрирован; следовательно, существование океана углеводородов на Титане маловероятно [Science, 248, 975].

Уран, Нептун, Плутон – радиолокационные исследования не проводились ввиду слишком больших расстояний до этих планет.

Астероиды. В ноябре 1979 г. в Аресибо на волне l = 12.5 см проведена радиолокация Весты; seff = (0.2 ± 0.1)pa2, a =272 км [Icarus, 1980, 43, 169]. С тех пор локация различных астероидов проводилась неоднократно. Упомянем некоторые из наиболее интересных новых результатов. Астероид Таутатис 4179 потенциально опасен для столкновения с Землей, в ноябре–декабре 1992 г. прошел от нее на расстоянии dmin = 3.6 млн. км. Локация проведена бистатическим методом: передающая антенна 70 м в Евпатории, принимающая – 100 м Эффельсберг, l = 3.5 и 6 см. Выявлены тонкие доплеровские эффекты в отраженном сигнале. Центральная частота спектра колеблется с периодом 14 с. Это можно объяснить интерференцией сигналов от двух глыб, составляющих астероид. Две округлых глыбы в контакте друг с другом, размером 2.5 и 1.5 км, синхронно обращаются вокруг общего центра тяжести с периодом P ~ 7 сут [ДАН, 1995, 342, 480]. Астероид Географос 1620, согласно радиолокационным данным, имеет неправильную невыпуклую форму, отношение осей ~2.76; это один из наиболее вытянутых объектов в солнечной системе.

Бесплатная лекция: "2.2.Картография средневековья" также доступна.

Рис. 4.6. Радиолокационные изображения астероида Клеопатра.

Астероид Клеопатра 216 исследовался при помощи радиолокатора Аресибо, расстояние составляло 171 млн. км. Размеры астероида 217´94 км. Астероид открыт в 1880 г., но его точная форма была до сих пор не известна. Радиолокация показала, что Клеопатра имеет форму обглоданной кости и очень высокий коэффициент отражения радиоволн (рис. 4.6). Астероид, скорее всего, металлический и состоит из железо-никелевого сплава, то есть подобен железным метеоритам. Необычная форма объясняется столкновением, испытанным в прошлом [Science, 2000, 288, 836; http://www.jpl.nasa.gov/pictures/kleopatra].

Кометы. Впервые отраженные сигналы от кометы были получены в 1980 г. Комета P/Encke наблюдалась в Аресибо на волне 12.6 см. Найденное сечение отражения радиоволн ~1 км2. В дальнейшем проведены успешные наблюдения ряда комет, включая кометы IRAS–Araki–Alcock, P/Halley, Hyakutake. Характер отраженных сигналов указывает на грубую, неправильную форму кометных ядер. Ядра вращаются с периодом от нескольких часов до нескольких суток. Вокруг ядер также обнаружены вращающиеся облака пылевых частиц.

Солнце. Трудность радиолокации Солнца состоит в том, что собственное радиоизлучение Солнца может быть на 2–3 порядка интенсивнее, чем отраженный импульс. Зондирующую волну нужно выбирать достаточно длинной, чтобы уровень Nкр располагался выше уровня Nt=1, иначе волна до отражения испытает сильное поглощение в солнечной короне. Первые эксперименты были проведены в 1961–1969 гг. Джеймсом [James] ом на волне l = 7.8 м. Получен отраженный сигнал, смещенный на 4 кГц по частоте относительно зондирующего сигнала. Наблюдаемое смещение соответствует движению отражающего слоя по направлению к наблюдателю со скоростью 16 км/с. Этот эксперимент – первое прямое доказательство существования "солнечного ветра", высокоскоростного истечения плазмы из солнечной короны. Одновременно наблюдалось уширение спектра отраженного сигнала до 70 кГц. Следовательно, в короне имеются турбулентные движения со скоростями до 300 км/с.

Радиолокация метеоров. Радиосигналы, отраженные от метеорных следов, зарегистрированы Хеем и др. в 1944 г., хотя эпизодически наблюдались и раньше. Механизм отражения радиоволн – томсоновское рассеяние (§2.9) на свободных электронах в ионизованном метеорном следе.

Если расстояние между электронами в следе меньше длины волны (в атмосфере Земли это всегда выполняется), то все электроны колеблются в фазе, и происходит сложение амплитуд, а не интенсивностей сигналов, рассеянных отдельными электронами. Тогда сечение рассеяния одним кубическим сантиметром метеорного следа равно s = 6.6·10–25N2 см2. По доплеровскому смещению частоты сигнала, отраженного от ионизованной подушки перед метеором, можно определить скорость метеора. Траектории метеоров определяются при одновременных наблюдениях из нескольких пунктов. Таким способом было найдено большое число радиантов для метеорных потоков, ранее не известных из оптических наблюдений, так как они всегда входят в атмосферу Земли на ее дневной стороне.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5155
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее