Популярные услуги

- Фракионирование клеток

2021-03-09СтудИзба

Лекция № 13.

Количество часов: 1

Фракционирование клеток

В цитологии широко применяют различные методы биохимии, как аналитические, так и препаративные. В последнем случае можно по­лучить в виде отдельных фракций разнообразные компоненты и изу­чать их химический состав, ультраструктуру и свойства. Так, в настоя­щее время в виде чистых фракций получают практически любые кле­точные органеллы и структуры: ядра, ядрышки, хроматин, ядерные оболочки, плазматическую мембрану, вакуоли эндоплазматического ретикулума, его рибосомы, рибосомы гиалоплазмы, аппарат Гольджи, митохондрии, их мембраны, пластиды, пероксисомы, микротрубочки и др. В последнее время получены чистые фракции центриолей и ядер­ных пор.

Получение клеточных фракций начинается с общего разрушения клетки, с ее гомогенизации. Затем из гомогенатов уже можно выделять фракции. Одним из основных способов выделения клеточных структyp является дифференциальное (разделительное) центрифугирование. Принцип его применения в том, что время осаждения частиц в гомогенате зависит от их размера и плотности: чем больше частица или чем она тяжелее, тем быстрее она осядет на дно пробирки. Для убыстрения процесса оседания варьируют ускорения, создаваемые центрифугой. При центрифугировании раньше всего и при небольших ускорениях осядут ядра и неразрушенные клетки, при 15—30 тыс. g осядут крупные частицы, макросомы, состоящие из ми­тохондрий, мелких пластид, пероксисом, лизосом и др., при 50 тыс. g осядут микросомы, фрагменты вакуолярной системы клетки. При повторном дробном центрифугировании этих смешанных подфрак-ций можно получить чистые фракции. Так, при разделении макросомной подфракции получают отдельно митохондрии, лизосомы, перок­сисомы. При разделении микросом можно получить фракцию мемб­ран аппарата Гольджи, фрагментов плазматической мембраны, вакуо­лей, гранулярного ретикулума. В случаях более тонкого разделения фракций используют центрифугирование в градиенте плотности саха­розы, что позволяет хорошо разделить компоненты, даже незначи­тельно отличающиеся друг от друга по удельной массе.

Прежде чем выделенные фракции анализировать биохимическими способами, необходимо проверить их на чистоту с помощью элек­тронного микроскопа.

Получение отдельных клеточных компонентов дает возможность изучать их биохимию и функциональные особенности. Так можно создать бесклеточную систему для рибосом, которые будут синтезиро­вать белок по заданной экспериментатором информационной РНК. Выделенные митохондрии в подобранных условиях могуг осуществлять синтез АТФ, на выделенном хроматине при участии соответству­ющих ферментов может происходить синтез РНК и т.д.

В последнее время применяются бесклеточные системы для воссо­здания клеточных надмолекулярных структур. Так, используя очищен­ные от гранул желтка экстракты цитоплазмы яиц земноводных или яиц морских ежей, можно получить ядра с ядерной оболочкой из вве­денной в эту бесклеточную систему чужеродной ДНК (например, ДНК бактериофага). Такая ДНК связывается с белками-гастонами, которые есть в избытке в таком экстракте, образуется хроматин (дезоксирибонуклеопротеид), который покрывается двойной мемб­ранной оболочкой, несущей даже ядерные поры. Такие модельные си­стемы помогают изучать тонкие, интимные процессы, например транспорт макромолекул из цитоплазмы в ядро, и наоборот. В цито-плазматических экстрактах яиц земноводных и иглокожих такие ядра могут периодически делиться путем митоза. Эти модели внесли огром­ный вклад в расшифровку природы регуляции клеточного цикла.

Большой вклад в биологию клетки вносят методы клеточной инже­нерии. Найдено, что различные живые клетки могут сливаться друг с другом, если специальными способами обработать их плазматические мембраны. Так можно слить эритроцит курицы и лимфоцит человека. При этом получается двуядерная клетка — гетерокарион, в котором происходит активация ядра куриного эритроцита (рис. 14). Если гете­рокарион образуется из близкородственных клеток (например, мыши и хомячки), то при вступлении их в митоз хромосомы могут объеди-

Рекомендуемые материалы

После разделения такой клетки получится истинно гибридная клетка. Другие приемы позволяют конст­руировать клетки из разных по происхождению ядер и цитоплазмы (рис. 15). Так, разрушив актиновый компонент цитоскелета и подвергнув клетки центрифугированию, клетку можно разделить на две части: ядро с узким ободком цитоплазмы — кариопласт и на оставшуюся часть цито­плазмы — цитопласт. Затем, используя разные кариопласты и цитопла-сты, можно создавать разные комбинации реконструированных клеток.

Методы клеточной инженерии широко применяются не только в экспериментальной биологии, но и в биотехнологических целях. На­пример, при получении моноклональных антител используются кле­точные гибриды между лимфоцитами иммунизированных животных и интенсивно размножающимися клетками миеломы. Полученные пер­вичные дикарионы образуют истинные гибридные клетки, которые и нтенсивно размножаются за счет генома опухолевых миеломных кле­ток, и одновременно выделяют большое количество антител за счет работы генома иммунизированных лимфоцитов. Этот прием позволя­ет получать большое число гибридомных клеток, вырабатывающих большие количества необходимых антител.

Нет необходимости приводить описание всех методов и приемов, используемых в цитологии для изучения строения, химии и функций клеток или их компонентов. Этого краткого обзора достаточно для то­го, чтобы показать богатство арсенала методов в цитологии, позволя­ющих давать точный анализ, начиная от формы, общего вида и разме­ра клетки и кончая молекулярной композицией ее отдельных частей.

Пероксисомы (микротельца)

Это небольшие вакуоли (0,3—1,5 мкм), одетые одинарной мсмбр| ной, отфаничивающей гранулярный матрикс, в центре которою рас полагается сердцевина, или нуклеоид (ничего не имеющий общего с нуклеоидом бактерий и вообще к ядерным структурам не относящийся)

В зоне сердцевины часто, особенно в пероксисомах печеночных клеток, видны кристаллоподобные структуры, состоящие из регулярно упакованных фибрилл, или трубочек. Изолированные сердцевины пероксисом содержат фермент уратоксидазу.

Пероксисомы обнаружены у простейших (амебы, тетрахимена), у низших грибов (дрожжи), у высших растений в некоторых эмбриональных

тканях (эндосперм) и в зеленых частях, способных к фотореспирации.

У высших позвоночных животных они найдены главным образом в печени и почках.

пероксисомы часто локализуются вблизи мембран ЭПР. У зеленых растений пероксисомы часто находятся в тесном контакте с митохондриями и пластидами.

Впервые пероксисомы были выделены из печени и почек. Во фракциях пероксисом обнаруживаются ферменты, связанные с метаболиз­мом перекиси водорода. Это ферменты (оксидазы, уратоксидаза, оксидаза D-аминокислот) окислительного дезаминирования аминокислот при работе которых образуется перекись водорода (Н2О2) и каталаза, разрушающая ее. В пероксисомах печени каталаза составляет до |40% белков и локализована в матриксе. Так как Н2О2 является токсическим веществом для клеток, то каталаза пероксисом может играть защитную роль.

В пероксиомах происходит накопление специфических белков, которые синтезируются в цитозоле и имеют свои сигнальные участки. В мембране пероксисом есть рецепторныи белок, который узнает транспортируемые белки. Белки мембран пероксисом, как и липиды, приходят из цитозоля. Такое накопление содержимого и рост мембраны приводят к общему росту пероксисомы, которая затем с помощью неизвестного пока механизма делится на две, т.е. самореплицируется.

Рецепторная роль плазмалеммы

Мы уже встречались с этой особенностью плазматической мембра­ны при ознакомлении с ее транспортными функциями. Белки-пере­носчики и насосы являются кроме всего также рецепторами, узнаю­щими и взаимодействующими с определенными ионами. Рецепторные белки связываются с лигандами и участвуют в отборе молекул, по­ступающих в клетки.

В качестве таких рецепторов на поверхности клетки могут высту­пать белки мембраны или элементы гликокаликса — гликопротеиды. Такие чувствительные к отдельным веществам участки могут быть раз­бросаны по поверхности клетки или собраны в небольшие зоны.

Разные клетки животных организмов могут обладать разными на­борами рецепторов или же разной чувствительностью одного и того же рецептора.

"Диагностика неопухолевых заболеваний кишечника" - тут тоже много полезного для Вас.

Роль многих клеточных рецепторов заключается не только в связы­вании специфических веществ или способности реагировать на физи­ческие факторы, но и в передаче межклеточных сигналов с поверхно­сти внутрь клетки. В настоящее время хорошо изучена система переда­чи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Эти гормоны связываются со специфиче­скими рецепторами на поверхности плазматической мембраны клет­ки. Рецепторы после связи с гормоном активируют другой белок, ле­жащий уже в цитоплазматической части плазматической мембраны, — аденилатциклазу. Этот фермент синтезирует молекулу циклического АМФ из АТФ. Роль циклического АМФ (цАМФ) заключается в том, что он является вторичным мессенджером — активатором ферментов киназ, вызывающих модификации других белков-ферментов. Так, при действии на печеночную клетку гормона поджелудочной железы глю-кагона, вырабатываемого А-клетками островков Лангерганса, он свя­зывается со специфическим рецептором, что стимулирует активацию аденилатциклазы. Синтезированный цАМФ активирует протеинкина-зу А, которая в свою очередь активирует каскад ферментов, в конечном счете расщепляющих гликоген (запасной полисахарид животных) до глю­козы. Действие инсулина заключается в обратном: он стимулирует вхож­дение глюкозы в печеночные клетки и отложение ее в виде гликогена.

В целом цепь событий развертывается следующим образом: гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу, которая синтезирует цАМФ. Последний активирует или ингибирует внутрикле­точный фермент или группу ферментов. Таким образом, команда (сиг­нал от плазматической мембраны) передается внутрь клетки. Эффек­тивность этой аденилатциклазной системы очень высока. Так, взаимо­действие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразова­телем внешних сигналов.

Существует и другой путь, при котором используются другие вто­ричные мессенджеры, — это так называемый фосфатидилинозитольный путь. Под действием соответствующего сигнала (некоторые нерв­ные медиаторы и белки) активируется фермент фосфолипаза С, кото­рая расщепляет фосфолипид фосфатидилинозитолдифосфат, который входит в состав плазматической мембраны. Продукты гидролиза этого липида, с одной стороны, активируют протеинкиназу С, которая вы­зывает активацию каскада киназ, что приводит к определенным кле­точным реакциям, а с другой — приводит к освобождению ионов каль­ция, который регулирует целый ряд клеточных процессов.

Другой пример рецепторной активности — рецепторы ацетилхолина, важного нейромедиатора. Ацетилхолин, освобождаясь из нервного окончания, связывается с рецептором на мышечном волокне, что вы­зывает импульсное поступление Na+ в клетку (деполяризация мембра­ны), открывая сразу около 2000 ионных каналов в зоне нервно-мы­шечного окончания.

Разнообразие и специфичность наборов рецепторов на поверхно­сти клеток приводят к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо (у высших животных) уничтожаются в результате иммунологиче­ских реакций.

С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматиче­ской мембране или в ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующие с квантами света. В плазматической мембра­не светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь при­водит к генерации электрического импульса.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее