Популярные услуги

Лекция 10

2021-03-09СтудИзба

60.Принцип работы расходомеров переменного перепада давления

Принцип действия расходомеров основан на том, что если в трубопроводе, по которому протекает вещество, устанавливают устройство, создающее местное сужение потока, то вследствие перехода части потенциальной энергии давление в кинетическую среднюю скорость потока в суженном сечении повышается, в результате чего статическое давление в этом сечении становится меньше статического давления перед сужающим устройством.

Разность давлений (перепад давления) тем больше чем больше расход вещества. Следовательно, перепад давления может служить мерой расхода вещества.

В измерительной техники в качестве служащих устройств используют диафрагмы и сопла. Наиболее широкое применение нашла стандартная диафрагма, представляющая собой тонкий диск с отверстием круглого сечения (рис.2).

При протекании жидкости по трубопроводу сужение потока начинается по диафрагме, а на некотором расстоянии после нее действием сил инерции сечение потока становится минимальным. Далее поток постепенно расширяется до полного сечения трубопровода. Перед диафрагмой и после нее образуются зоны завихрения, на которые затрачивается часть энергии, вследствие чего наблюдается потеря давления.

Рассмотрим поток жидкости, проходящий через диафрагму. Выделим два сечения (рис.3): сечение 1-1, в котором отсутствует влияние сужающего устройства на характер потока и сечение II-II, в котором наблюдается сжатие струи.

Зависимость между расходом жидкости и перепадом давления можно установить, пользуясь уравнением Бернулли и уравнением неразрывности струи. Для двух сечений потока Iи II горизонтального трубопровода при условии, что трение отсутствует, уравнение имеющее следующий вид:

P11/P1 + V12/2 = P21/P2 + V22/2; P1V1S1 = P2V2S2

Плотность жидкости, проходящей через сужающее устройство, практически можно считать неизменным (Р1 = Р2 = Р), следовательно,

Рекомендуемые материалы

P11-P2=P/2(V22-V12) и V1S1 = V2S2

Наибольшее распространение в отрасли получила стандартная диафрагма.

Стандартная диафрагма может применятся для измерения расхода в трубопроводах диаметром более 50 мм при условии, что относительная площадь сужающего устройства лежит в интервале 0,05<=m<=0,7.

Сужающие устройства применяют в комплекте с дифференциальными манометрами. Их соединяют с помощью двух трубок, внутренние диаметры которых составляет не менее 8мм. Внутренний диаметр трубок, соединяющих кольцевые камеры или отдельные отверстия сужающего устройства с уравнительными или разделительными сосудами; должен быть не менее 12 мм.

61.Типы и принцип работы тахометрических расходомеров.

К тахометрическим относятся расходомеры и счетчики , в которых имеется вращающийся элемент со скоростью, пропорциональной объемному расходу. Это турбинные, крыльчатые, шариковые, роторно-шаровые и камерные (к последним относятся барабанные, с измерительными мехами, или иначе мембранами, диафрагмами, а также поршневые, ротационные и др.).

Обычно расходомерами называют приборы, выходной сигнал (или показания) которых пропорциональны скорости вращения преобразователя, а счетчиками – приборы, в которых общее число оборотов или ходов преобразователя пропорционально количеству газа (объему или массе).

В турбинных расходомерах и счетчиках винтообразная или с лопатками ось располагается вдоль потока, а в крыльчатых перпендикулярно к потоку. У роторно-шаровых расходомеров шар или другое тело вращается вокруг своей оси под воздействием потока. Эти приборы также называют левитирующими, или расходомерами с гидродинамической подвеской ротора.

62.Скоростные счетчики количества жидкости        

Скоростные, как и объемные, счетчики применяют для определения объемного количества измеряемой среды. Однако в отличие от объемных скоростные счетчики не имеют измерительных камер и производят косвенное измерение количества веществ в объемных единицах.

Чувствительным элементом скоростных счетчиков является аксиальная или тангенциальная турбинка, приводимая во вращение потоком жидкости, протекающим через счетчик.

Принцип действия скоростных счетчиков основан   на  том, что число оборотов турбинки в единицу времени n, пропорционально скорости потока, омывающего турбинку:

n=kW,

(8.7)

где k — коэффициент пропорциональности; W — скорость потока в некотором сечении счетчика F.

Объемный расход через счетчик равен:

Q=WF.          

(8.8)

Решая совместно (8.8)     и (8.7), получим

n = k/F *Q     

(8.9)

Отсюда следует, что шкала тахометра,  измеряющего  мгновенное число оборотов турбинки n, может быть проградуирована в единицах объемного расхода измеряемого потока жидкости. Выражение (8.9) с учетом (8.3) примет вид:

nd?  = k/F*dV           

(8.10)

Интегрируя (7.10) в интервале времени ?2  — ?1, получим:

V= F/k *(N2 — N1) 

(8.11)

где N2 — N1 = — разность показаний счетного механизма в интервале времени ?2  — ?1 или число оборотов турбинки в этом интервале.

Таким образом, измеряя суммарное число оборотов турбинки с помощью счетного механизма оборотов, можно получать информацию об объемном количестве вещества. Если же скоростной счетчик снабжен тахометром, то он может измерять объемный расход потока.

При использовании скоростного счетчика в качестве измерителя объемного расхода вещества обычно применяют электрический тахогенератор. Ротор этого генератора получает вращение от оси турбинки скоростного счетчика, а индуцированная в статоре ЭДС измеряется вторичным прибором — вольтметром.

Схема скоростного счетчика с аксиальной турбинкой показана на рис. 8.3. Внутри корпуса размещена горизонтально вдоль направления измеряемого потока жидкости турбинка 6, выполненная в виде многозаходного винта. Перед турбинкой установлен струевыпрямитель 1, предназначенный для сглаживания возмущений потока на входе и исключения завихрения. Вращение турбинки через червячную пару 5 и передаточный механизм 2, расположенный в камере 4, передается через сальник счетному устройству 3.

 

Рисунок 8.3 — Схема скоростного счетчика с аксиальной турбинкой

Для регулирования скорости вращения турбинки в процессе тарировки счетчика предусмотрено регулировочное устройство 7, которое позволяет поворачивать одну из радиальных перегородок струевыпрямителя относительно направления потока.

Счетчики с аксиальной турбинкой изготавливают с диаметрами условного прохода 50—300 мм для измерения количества вещества при расходах 3—1300 м3/ч, классы точности 1; 1,5; 2.

Для измерения количества жидкости при малых расходах используются скоростные счетчики с тангенциальными турбинками. В этих счетчиках турбинка с прямолинейными или криволинейными лопастями установлена на вертикальной оси. Поток жидкости тангенциально подводится к турбинке и приводит ее во вращение. В зависимости от способа подвода жидкости к лопастям турбинки различают однострунные и многоструйные счетчики. Жидкость в одноструйных счетчиках (рис. 8.4, а) подводится к прямому гладкому каналу на лопасти турбинки 1 одной струей через фильтр 2.

Рисунок 8.4 — Схема скоростных счетчиков с тангенциальной турбинкой

В многоструйных счетчиках (рис. 8.4, б) корпус выполнен так, что в нем имеется два ряда равномерно распределенных по окружности сопл. Расположение сопл в корпусе счетчика показано на рис. 8.4, в. Через нижний ряд сопл 2 жидкость подается на турбинку 1, а через верхний ряд сопл 3 отводится из камеры вращения турбинки. Однострунные счетчики более просты по конструкции и в них меньше потеря давления, но они имеют меньшую надежность из-за одностороннего износа опоры турбинки.

Счетчики с тангенциальной турбинкой имеют диаметр условного прохода 15—40 мм, верхний предел измерений по расходу 3— 20 м3/ч и классы точности 2—3.

Существенным недостатком скоростных счетчиков является зависимость показаний от вязкости измеряемой жидкости

63.Классификация средств измерения уровня.

В настоящее время существует обширный ряд технических средств, приборов решающих задачу измерения и контроля уровня в промышленном производстве. Приборы для измерения уровня реализуют разнообразные методы, основанные на различных физических принципах. Наиболее распространенные методы измерения уровня, позволяющие преобразовывать значение уровня в электрические величины и производить автоматизацию производственных процессов это:

I . Контактные методы

Поплавковый  (механический)

При поплавковом методе индикатором уровня служит поплавок. Для передачи информации от чувствительного элемента используются различные виды связи. Как правило, поплавок снабжен магнитом и заключен в измерительную трубу либо скользит по направляющему стержню. Магнит может влечь за собой ползунок реостата. Изменение сопротивления преобразуется в электрический выходной сигнал, что дает помимо визуального контроля возможность дистанционной передачи показаний и включения в систему автоматизации.

Ряд поплавковых уровнемеров используют магнитострикционный эффект. При этом направляющий поплавок стержень содержит волновод, заключенный в катушку, по которой подаются импульсы тока. Под действием магнитных полей тока и двигающегося магнита в волноводе возникают импульсы продольной деформации, распространяющиеся по волноводу и принимаемые пьезоэлементом вверху стержня. Прибор анализирует время распространения импульсов и преобразует его в выходные сигналы.

Важной характерной особенностью поплавковых уровнемеров, является высокая точность измерений (+/- 1…5 мм.) . Достаточно широка область применения этого метода. Метод явно неприменим только в средах, образующих налипание, отложение осадка на поплавок, а также коррозию поплавка и конструкции чувствительного элемента (ЧЭ). Температура рабочей среды: - 40…120 ºС, избыточное давление: до 2 МПа, для преобразователей с гибким ЧЭ - до 0,16 МПа. Плотность среды: 0,5..1,5 г/см3. Диапазон измерений – до 25 м. Поплавковый метод может с успехом применяться в случае пенящихся жидкостей. Типичным применением поплавковых уровнемеров является измерение уровня топлива, масел, легких нефтепродуктов в относительно небольших емкостях и цистернах в процессе коммерческого учета.

Емкостной

Емкостной метод – более простой и дешевый. Он обеспечивает хорошую точность порядка 1,5 %, имеет те же ограничения, что и поплавковый - среда не должна налипать и образовывать отложения на ЧЭ. Вместе с тем, в отличие от поплавкового, он применим как для жидких, так и для сыпучих сред (размер гранул – до 5 мм.). Характерным принципиальным ограничением для емкостного метода является – однородность среды, среда должна быть однородной, по крайней мере, в зоне расположения ЧЭ.

ЧЭ емкостного уровнемера представляет собой конденсатор, обкладки которого погружены в среду. Он может быть выполнен в виде двух концентрических труб, пространство между которыми заполняется средой, либо в виде стержня, при этом роль второй обкладки играет металлическая стенка емкости. В случае проводящей жидкости ЧЭ покрывается изолятором, обычно фторопластом. Изменение уровня жидкости приводит к изменению емкости ЧЭ, преобразуемой в выходной электрический сигнал.

Условия применения емкостных датчиков по характеристикам рабочей среды: температура -40…+200 ºС, давление – до 2,5 МПа, диапазон измерения – до 3м. (30 м. – для гибких и тросовых ЧЭ).

Гидростатический

Гидростатические уровнемеры измеряют давление столба жидкости и преобразуют его в значение уровня, поскольку гидростатическое давление зависит от величины уровня и плотности жидкости и не зависит от формы и объема резервуара. Они представляют собой дифференциальные датчики давления. На один из входов, подсоединяемый к емкости подается давление среды. Другой вход соединяется с атмосферой - в случае открытой емкости без избыточного давления или соединяется с областью избыточного давления в случае закрытой емкости под давлением.

Конструктивно гидростатические датчики бывают двух типов: мембранные и колокольные (погружные). В первом случае тензорезистивный или емкостной датчик непосредственно соединен с мембраной и весь прибор находится внизу емкости, как правило, сбоку на фланце, при этом расположение ЧЭ (мембраны) соответствует минимальному уровню. ( Сапфир-ДГ, Метран-100-ДГ, 3051 L ). В случае колокольного датчика чувствительный элемент погружен в рабочую среду и передает давление жидкости на тензорезистивный сенсор через столб воздуха запаянный в подводящей трубке ( УГЦ-1.1, УГЦ-1.2 ) .

Гидростатические уровнемеры применяются для однородных жидкостей в емкостях без существенного движения рабочей среды. Они позволяют производить измерения в диапазоне до 250 КПа, что соответствует (для воды) 25-и метрам, с точностью до 0,1% при избыточном давлении до 10 МПа и температуре рабочей среды: – 40..+120°С. Гидростатические уровнемеры могут использоваться для вязких жидкостей и паст. Важным достоинством гидростатических уровнемеров является высокая точность при относительной дешевизне и простоте конструкции.

Буйковый

Метод определения уровня по выталкивающей силе действующей на погруженный в рабочую жидкость буек используют буйковые уровнемеры . На тонущий буек действует в соответствии с законом Архимеда выталкивающая сила, пропорциональная степени погружения и, соответственно, уровню жидкости. Действие этой силы воспринимает тензопреобразователь , либо индуктивный преобразователь , либо заслонка, перекрывающая сопло .

Буйковые уровнемеры предназначены для измерения уровня в диапазоне – до 10 м. при температурах – 50..+120ºС (в диапазоне +60..120ºС при наличии теплоотводящего патрубка, при температурах 120..400°С приборы работают как индикаторы уровня) и давлении до 20 МПа, обеспечивая точность 0,25..1,5%. Плотность контролируемой жидкости: 0,4…2 г/см3.

Буйковые уровнемеры часто применяются для измерения уровня раздела фаз двух жидкостей. Возможно, также, их использование для определения плотности рабочей среды при неизменном уровне.

II . Бесконтактные методы

Зондирование ультразвуком

Метод определения уровня по выталкивающей силе действующей на погруженный в рабочую жидкость буек используют буйковые уровнемеры . На тонущий буек действует в соответствии с законом Архимеда выталкивающая сила, пропорциональная степени погружения и, соответственно, уровню жидкости. Действие этой силы воспринимает тензопреобразователь (уровнемеры типа Сапфир-ДУ ), либо индуктивный преобразователь ( УБ-ЭМ ), либо заслонка, перекрывающая сопло (пневматические уровнемеры типа ПИУП ).

Буйковые уровнемеры предназначены для измерения уровня в диапазоне – до 10 м. при температурах – 50..+120ºС (в диапазоне +60..120ºС при наличии теплоотводящего патрубка, при температурах 120..400°С приборы работают как индикаторы уровня) и давлении до 20 МПа, обеспечивая точность 0,25..1,5%. Плотность контролируемой жидкости: 0,4…2 г/см3.

Буйковые уровнемеры часто применяются для измерения уровня раздела фаз двух жидкостей. Возможно, также, их использование для определения плотности рабочей среды при неизменном уровне.

Зондирование электромагнитным излучением

Микроволновые радарные уровнемеры – наиболее сложные и высокотехнологичные средства измерения уровня. Для зондирования рабочей зоны и определения расстояния до объекта контроля здесь используется электромагнитное излучение СВЧ диапазона.

В настоящее время широко используются два типа микроволновых уровнемеров: импульсные и FMCW ( frequency modulated continuous wave ).

В уровнемерах FMCW происходит постоянное непрерывное излучение линейно частотно модулированного сигнала и, одновременно, прием отраженного сигнала с помощью одной и той же антенны. В результате на выходе получается смесь сигналов, которая анализируется с применением специального математического и программного обеспечения для выделения и максимально точного определения частоты полезного эхо-сигнала. Для каждого момента времени разность частот прямого и обратного сигналов прямопропорциональна расстоянию до контролируемого объекта.

Импульсные микроволновые уровнемеры излучают сигнал в импульсном режиме, при этом прием отраженного сигнала происходит в промежутках между импульсами исходного излучения. Прибор вычисляет время прохождения прямого и обратного сигналов и определяет значение расстояния до контролируемой поверхности.

Обычно, рабочая частота радарных уровнемеров независимо от типа варьирует от 5,8 до 26 ГГц. Чем более высока частота, тем более узок луч и тем выше энергия излучения, а, следовательно, сильнее отражение.

Поэтому высокочастотные уровнемеры позволяют производить измерения уровня сред с низкой диэлектрической проницаемостью и, следовательно, слабой отражательной способностью. Они, также, удобны в емкостях, где присутствует различное оборудование, сокращающее свободную зону для работы радара. Вместе с тем, высокочастотные уровнемеры более чувствительны к таким явлениям как запыленность, испарения, волнение поверхности рабочей среды, налипание частиц среды на поверхность антенны вследствие более интенсивного рассеивания сигнала. В подобных условиях лучше работают уровнемеры с частотой 5,8..10 ГГц.

Другой важной характеристикой влияющей на формирование сигнала является размер и тип антенны. Различают следующие типы антенн: рупорная (коническая), стержневая, трубчатая, параболическая, планарная. Чем больше размер антенны, тем более сильный и узконаправленный сигнал она излучает и, в тоже время, тем лучше прием отраженного сигнала.

Ещё посмотрите лекцию "4.3. Принципы и методы создания ИС" по этой теме.

Наиболее универсальный тип антенны – рупорная. Она применяется, как правило, в больших емкостях, позволяет работать с широким спектром сред по диэлектрической проницаемости, применима в сложных условиях и обеспечивает диапазон измерения до 35..40 м. (в условиях спокойной поверхности)

Стержневая антенна применяется в небольших емкостях с химически агрессивными средами или гигиеническими продуктами, а также в случае, когда доступ в емкость ограничен малыми размерами патрубка. Диапазон измерения – до 20 м. Поверхность стержневой антенны покрыта слоем защитной изоляции.

Трубчатая антенна представляет собой надстроенный удлиненный волновод. Она позволяет формировать наиболее сильный сигнал за счет снижения рассеивания и используется в особо сложных случаях при наличии сильного волнения поверхности среды или большого слоя густой пены либо для случая сред с низкой диэлектрической проницаемостью. Трубчатая антенна применима для небольшого диапазона измерения уровня.

Планарный и параболический типы антенн обеспечивают особо высокую точность (до +/- 1 мм.) и применяются в системах коммерческого учета.

Радарные уровнемеры - наиболее универсальные средства измерения уровня. Не имея непосредственного контакта с контролируемой средой, они могут применяться для агрессивных, вязких, неоднородных жидких и сыпучих материалов. От ультразвуковых бесконтактных уровнемеров их выгодно отличает гораздо меньшая чувствительность к температуре и давлению в рабочей емкости, к их изменениям, а также большая устойчивость к таким явлениям как запыленность, испарения с контролируемой поверхности, пенообразование. Радарные уровнемеры обеспечивают высокую точность (до +/- 1 мм.), что позволяет использовать их в системах коммерческого учета. Вместе с тем существенным лимитирующим фактором применения радарных уровнемеров остается высокая стоимость данных приборов.

Каждый метод имеет характерный набор технических реализаций, расширяющийся с развитием измерительной техники. Методы, используемые для сигнализации наличия (отсутствия) рабочей среды часто те же что и для измерения уровня.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее